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Introduction

In a Quantum Field Theory, all the physically relevant information is contained in the

correlation functions, which can be conveniently obtained from the generating func-

tional using the functional integration. The functional integration can be interpreted

as a d-dimensional generalization of the path-integral, and from the beginning scientist

approached to this task with a perturbative expansion of the field fluctuations around

the fundamental configuration. In such a way, we became able to deal with many

little-interacting models, and we developed some advanced techniques in order to solve

the technical and conceptual issue of divergences arising in the calculations, through

an intuitive redefinition of the physical quantities. But as many theories revealed to

be easily manageable using renormalization techniques, others manifested pathologi-

cal behaviors making them impracticable, such as it is the case of a QFT concerning

General Relativity.

Luckily, the perturbative expansion is not the only way of integrating out the field

fluctuations, and an alternative approach to the functional integration, first developed

by K.G. Wilson [23] and reformulated by J. Polchinsky and by C. Wetterich [22] in a

different form, allows to achieve non-perturbative results and is particularly useful to

introduce a new definition of renormalizability called Asymptotic Safety, that includes

a wider range of theories. Such a new approach is based on the concept of the Effec-

tive Average Action, that can be interpreted as the effective action we would achieve

integrating out all the field fluctuations averaged over a finite volume, and allows to

perform the functional integration momentum shell by momentum shell through the

Exact Renormalization Group Equation, a non-perturbative integro-differential equa-

tion which describe the RG flow of the EAA.

We can interpret the EAA also as the effective action describing our system at a
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particular energy scale k, providing us an alternative tool to compute the quantum

effective action as the result of a flow in an infinite-dimensional theory space. But we

are evidently unable to work with infinite many base elements, and if we are interested

in non-numerical results we are forced to project this infinite dimensional space on an

arbitrary finite dimensional subspace. Such a process is called truncation, and despite

it is a non-perturbative approximation and it allows to work with a wider range of

theories than the perturbative expansion do, it has the disadvantage of being arbitrary,

and there is in principle no way to know a priori if a truncation is accurate. When

we set a truncation, we must try to keep all the physically relevant degrees of freedom

neglecting only the basis elements which do not considerably modify the flow of the

investigated ones, and the only way we can check the accuracy of a truncation is to

compare its outcomes with the ones achieved using a wider truncation or other asserted

techniques.

Since now, people mainly investigated local truncations, by expanding the EAA in

powers of the fields and focusing on the small momenta behavior of the result. This is

the case of the Local Potential Approximation and of the Derivative Expansion. Such

a class of truncations reveals to be accurate because, as a consequence of the particular

structure of the ERGE, only the field fluctuations with momentum smaller than the

reference energy scale contributes to the RG flow of the EAA.

But we could also be interested in the non-local structure of the effective average

n-point vertices, as they are necessary for the calculation of the cross sections and of

the scattering amplitudes, and the local truncations reveal to be unsuitable to achieve

such a results for arbitrary momenta. The most useful approach for a non-perturbative

evaluation of the momentum dependent n-point vertices has been developed by J.-P.

Blaizot, R. Mendez-Galain and N. Wschebor [6] [2] [5], but it requests the numerical

evaluation of an integro-differential equation and exploit many approximations.

Therefore, it would be interesting to find an appropriate non-local truncation able

to describe the momentum-dependent structure of the correlation functions in the the-

ory under investigation. Moreover, there are many situations in which the non-local

structure of the EAA is fundamental in order to achieve meaningful results, such as it

is the case of low energy QCD correlators close to the confinement phase or the compu-

tation of the contribution to the vacuum energy flow for interacting massless fields. In
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fact, in both cases the non-local structure of the 2-point function plays a fundamental

role. Finally, an adequate non-local truncation would allow to obtain more accurate

results than the LPA without introducing an high order derivative expansion, which

reveals to be quite complicate.

In order to achieve all these results, we need to find a non-polynomial analytical

function dependent from few k-dependent parameters able to accurately fit the non-

local structure of the n-point vertices for every energy scale k, in order to project the

exact EAA flow on a subspace as close as possible to the real trajectory. We tried to

find such a function and we developed two non-local truncations for a d-dimensional

real scalar field theory, comparing the outcomes with the results achieved using other

asserted techniques. Finally, we numerically implemented the BMW technique in order

to test the 2 and 4 point vertices structure obtained using the non-local truncation we

developed.

In Chapter 1, the main concepts about the non-perturbative approach to the RG

are introduced. The Average Effective Action is defined and it’s flow equation (ERGE)

is derived. Finally, the concept of Asymptotic Safety is introduced. All the results are

compared with their analogues in perturbation theory, in order to check their validity

and to better understand the physical meaning of this approach.

In Chapter 2 the LPA truncation is introduced in a d-dimensional interacting real

scalar field framework and the RG flow equations for the couplings are derived. The

anomalous dimension of the scalar field is investigated together with the flow of the

VEV and, finally, for the 1-dimensional case corresponding to the Quantum Mechanical

anharmonic oscillator, the vacuum energy outcomes are compared with the correspond-

ing results in perturbation theory.

In Chapter 3 most of our original work is collected. A non-local ansatz for the

2-point vertex is introduced in a real scalar field framework, supported by the 1-loop

results given in appendix A, and the RG flow equations for the couplings are derived. An

approximation scheme is developed in order to define a consistent non-local truncation

also for a Z-2 invariant real scalar field theory and, under these approximations, the

differential equations for the couplings are derived under the new truncation. Finally,

the vacuum energy results for the QM anharmonic oscillator are compared with the

LPA results and with the most accurate numerical ones.
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Finally, in Chapter 4, the BMW integro-differential equation describing the RG flow

of the momentum dependent 2-point vertex is derived through some approximations.

The case of a real scalar field theory is numerically solved by us for different bare actions

both in 1 and 4 dimensions and the results are compared to the ones achieved using the

non-local truncations, in order to test the validity of the ansatz we introduced. Some

analytical results concerning the BMW technique are given in appendix B.

In the Conclusions the main achieved results are summarized, some improvements

and further tests are suggested and some suggestive future applications for this tech-

nique are pointed.



Chapter 1

The Exact Renormalization

Group Equation

In this chapter we introduce the Effective Average Action in the framework of QFT

and we develop a non-perturbative RG equation describing it’s flow in the theory space.

The effective average action Γk[φ] can be thought as the result of having integrated out

all the field fluctuations with momentum higher than k from the bare action S. The

RG flow of the EAA can be investigated through the Exact Renormalization Group

Equation, which affords to integrate out the field fluctuations momentum shell by

momentum shell and therefore is a non-perturbative equation despite it present a one-

loop structure. We will compare the derived achievements with the perturbative loop

expansion ones and we will introduce a useful non-perturbative approximation scheme,

called truncation, focusing on the scheme dependence of our results. Finally, we will

show how this non-perturbative approach to QFT shall introduce a new and more

general definition of renormalizability under the name of AS.

1.1 Physical meaning of the Effective Action

We will now give a brief introduction about the physical meaning of the effective ac-

tion and it’s possible interpretation in a QFT framework [18], [28]. All the physically

relevant information of a quantum field theory can be derived from the n-point Green’s

7
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functions

Gnd (x1, ..., xn)A1...AN = 〈0|TφA1(x1)...φAn(xn)|0〉J=0

=

∫
DφφA1(x1)...φAn(xn) e−S[φ] (1.1)

that can be obtained with n φ−derivate acting on the generating functional

Z[J ] =

∫
Dφe−S[φ]+〈φA,JA〉 (1.2)

where
〈
φA, J

A
〉

=
∑
A

∫
ddxφA(x)JA(x)

Gnd (x1, ..., xn)A1...AN =

∣∣∣∣ δZ[J ]

δJA1(x1)...δJAn(xn)

∣∣∣∣
J=0

(1.3)

where, for notational semplicity, we omit the A subscript in φ and J where possible.

Diagrammatically speaking the disconnected Green’s functions contains completely dis-

jointed pieces [1], but when we deal with the calculation of cross sections we are really

interested only in the connected Green’s functions, which can be obtained from the

functional W [J ] where

W [J ] = log[Z[J ]] (1.4)

Gnc (x1, ..., xn)A1...AN =

∣∣∣∣ δW [J ]

δJA1(x1)...δJAn(xn)

∣∣∣∣
J=0

(1.5)

The relation between disconnected and connected Green’s functions is illustrated in

figure 1.1 and can be clarified if we invert 1.4 and expand the exponential

Z[J ] =
∞∑
n=0

1

n!
(W [J ])n (1.6)

For our purpose it is necessary to go one step further, and in place of W[J] work

with the sum of all connected one particle irreducible vacuum-vacuum graphs. We

introduce the classical field φ̄j as the vacuum expectation value of the operator φ in

the presence of the current J

φ̄JA(x) =
〈0|φA(x)|0〉J
〈0|0〉J

=
δW [J ]

δJA
(1.7)
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Figure 1.1: Diagrammatic representation of the relation between the Disconnected and the

Connected 6-vertex Green’s functions.

and inverting this relation we can obtain Jφ̄ and define the quantum effective action by

the Legendre transform

Γ[φ̄] =
〈
φ̄A, J

A
φ̄

〉
−W [Jφ̄] = min

J

(〈
φ̄A, J

A
〉
−W [J ]

)
(1.8)

We will now show that Γ[φ] is an effective action in the sense that W [J ] may be

calculated as a sum of connected tree graphs for the vacuum-vacuum amplitude, with

vertices calculated using Γ[φ] instead of S[φ]. For this purpose we introduce WΓ[J, g]

as follow [20]

ZΓ[J, g] = eWΓ[J,g] =

∫
Dφe

− 1
g (Γ[φ]−〈φA,JA〉) (1.9)

Extracting the Feynman rules from our modified action g−1Γ[φ] we find that the prop-

agator is proportional to g while all vertices make a contribution proportional to g−1.

It is easy to show that for any connected graph the number of loops is L = I − V + 1

where I is the number of internal lines, including those connected to the J vertices,

and V is the number of vertices, including those produced by the current J. So we can

extract the g-dependence for the L-loop components

WL
Γ [J, g] = gI−VWL

Γ [J, 1] = gL−1WL
Γ [J ] (1.10)

and expand

WΓ[J, g] =
∞∑
L=0

gL−1WL
Γ [J ] (1.11)

so, in the g → 0 limit, we get

lim
g→0

g WΓ[J, g] = W 0
Γ [J ] (1.12)
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If now we rewrite equation 1.9 in Minkowsky formulation we find that in the small g

limit the path integral is dominated by the point of stationary phase where φ = φ̄J and

we have

lim
g→0

gWΓ[J, g] =
〈
φ̄JA, J

A
〉
− Γ[φ̄J ] = W [J ] (1.13)

therefore, from 1.12

W 0
Γ [J ] = W [J ] (1.14)

where W 0
Γ [J ] is the sum of tree vacuum-vacuum grapgs calculated with vertices and

propagators derived from Γ[φ̄]. We can write with symbolic formulation

W [J ] =

∫
sum of connected tree graphs

Dφ e−Γ[φ]+〈φAJ ,JA〉 (1.15)

meaning that W [J ] can be calculated from a sum over all the tree level graphs with

fundamental vertices and propagators obtained using the effective action instead of the

bare one. But we also know that the same functionalW [J ] can be achieved from the sum

over the connected graphs with bare vertices and propagators, and, as every connected

graph can be view as a tree level sum using the 1PI n-point functions as vertices

connected by the 2-point green functions, we can infer that the opposite effective action

−Γ[φ] is the result of a sum over the 1PI connected graphs in presence of the external

field φ. This can be achieved formally using a background field technique.

−Γ[φ̄] =

∫
sum of 1PI connected graphs

Dφ e−S[φ+φ̄] (1.16)

Γ[φ̄] is an effective action also in the sense that provide a quantum-corrected field

equation. In fact, if we take a variational derivative of Γ[φ̄], we find

δΓ[φ̄]

δφ̄(x)
= Jφ̄(x) (1.17)

and, for φ̄ = φ̄J with J = 0 ∣∣∣∣ δΓ[φ̄]

δφ̄(x)

∣∣∣∣
φ̄=φ̄0

= 0 (1.18)

meaning that all the possible classical fields in the absence of external current are given

by the stationary points of Γ.
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Another interesting interpretation of the physical meaning of the effective action

comes from the analysis of the effective potential, defined as the opposite of the density

of effective action when the classical field φ̄0 is supposed to be constant

Γ[φ̄0] = −V (φ̄0)

∫
ddx (1.19)

It is possible to show that V (φ̄0) is the minimum of the expectation value of the energy

density for all states constrained by the conditions that the fields φ have expectation

value φ̄0. For the complete demonstration see [20].

1.2 The Effective Average Action

The starting point of the framework we are developing is due to Wilson and consists of

performing a functional integration over a subspace of all the possible field fluctuations,

discriminated by a selection in the allowed fluctuations momentums [23] . The final

result will be the same as if a complete integration is performed, provided the bare

action to be adjusted in order to consider the neglected field fluctuations. In such a

prospective, we are allowed to integrate out the field fluctuations piecemeal and the

central point of this approach to QFT is the idea that the effective theory describing

physical phenomena at a momentum scale k can be thought as the result of having

integrated out all the fluctuations of the field with momentum larger than k from the

bare action. This can be easily obtained, as if we are using the functional integration

framework to quantize the classical action we can directly select which field modes will

give the greatest contribution to the generating functional. It is sufficient to add a

momentum dependent term ∆kS[φ] to the bare action S[φ] acting as a weight in the

path integral and suppressing all the contributions from field fluctuations with Fourier

modes lower than k.

Zk[J ] =

∫
Dφ e−S[φ]−∆kS[φ]+〈φA,JA〉 (1.20)

where
〈
φA, J

A
〉

=
∑
A

∫
ddxφA(x)JA(x)

The simplest choice for the regulator is
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∆kS[φ] =
1

2

∫
ddxφA(x)RABk (−∇2)φB(x) (1.21)

where

RABk (−∇2) = ZABR̄k(−∇2) (1.22)

with R̄k shape function satisfying the following requirements:

R̄k(p2)→

∞ for
( p
k

)2 → 0 & k2 →∞

0 for
( p
k

)2 →∞ & k2 → 0
(1.23)

We can now use our modified generating functional to get a modified average action.

We obtain Wk[φ] from the generating functional

Wk[J ] = log[Zk[J ]] (1.24)

and then, with a modified Legendre transform, we get the effective average action

Γk[φ̄] ≡
〈
φ̄A, J

A
k,φ̄

〉
−Wk[Jk,φ̄]−∆kS[φ̄] (1.25)

where, now, the ∆kS[φ] term belong to the classical field, while the cutoff term in in

1.20 depends on the field fluctuations.

In the low k limit the functional integration is unconstrained and we have

lim
k→0

∆kS[φ] = 0 ⇒ lim
k→0

Wk[J ] = W [J ] (1.26)

the modified Legendre transform coincide with the standard one and we get the stan-

dard effective action. The need of a modified Legendre transform can be easily under-

stood if we try to analyse the high k limit. If we use a standard Legendre transform to

get our effective average action

Γ̃k[φ̄] =
〈
φ̄A, J

A
k,φ̄

〉
−Wk[Jk,φ̄] (1.27)

exponentiating and substituting 1.24 and 1.20 we get to the integro-differential equation

exp{−Γ̃k[φ̄]} =

∫
Dφ exp{−S[φ]−∆kS[φ] +

∫
ddx(φA − φ̄A)

δΓ̃k[φ̄]

δφA
} (1.28)
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From the definition of the regulator 1.21 we can see that, when k →∞, ∆kS[φ] reduces

to a non-normalized Gaussian with vanishing width and suppress all the contributions

in the integral except the ones from null φ, acting as a no-normalized delta-functional.

The problem of the correct normalization will be explored and solved in chapter 1.6

with a more rigorous approach to the path integral called ”Balanced Coarse-Graining”.

For now it is sufficient to show that, under the normalization assumption, the high k

limit of the average effective action obtained with a regular Legendre transform reduces

to

Γ̃k[φ̄] ≈ S[φ̄] + ∆kS[φ̄] (1.29)

But in Wilsonian approach k → ∞ limit should mean no functional integration, and

so no quantization. Therefore we want to recover the bare action as high k limit of the

average effective action. It is easy to show that this can be obtained with the modified

Legendre transform we introduced in 1.25. In fact, proceeding as before, we can write

the integro-differential equation

exp{−Γk[φ̄]} =

∫
Dφ exp{−S[φ]−∆kS[φ− φ̄] +

∫
ddx(φA − φ̄A)

δΓk[φ̄]

δφA
} (1.30)

and, for k →∞

Γk[φ̄] ≈ S[φ̄] (1.31)

We have now introduced a new functional interpolating between the bare action S
and the full effective action Γ. But we could also ask if the effective average action

has a physical significance also for arbitrary k. We can try to answer this question

remembering the interpretation of the effective action we gave in 1.1. We find that

the effective average action Γk[φ̄], used at three level, gives an accurate description of

processes occurring at momentum scales of order k, where k behaves like a physical IR

cutoff suppressing all the fluctuations with lower momentum. The characteristic physic

scale k has to be defined case by case and depend on the particular situation we are in-

terested in. An example of this could be a particle physics scattering amplitude, where

the center of mass energy of the process behaves like an IR-cutoff and the effective
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average action used at tree-level would allow to properly calculate the cross sections.

The effective average action is so called because, as we understand from Wilson’s ap-

proach to QFT, it is closely related to the effective action for fields that have been

averaged over volumes of order k−d, this imposing the momentum of the fluctuations

to be higher than k. Additionally, the average effective action allows a good description

of phenomena with characteristic scale k in the sense that it allows to derive classical

equation of motion containing also quantum effects relevant for the scale of interest

k. For notational simplicity we considered a fundamental theory, where the complete

functional integration includes the field fluctuations with arbitrary momentum, but

the generalization to an effective theory is straightforward and can be achieved simply

introducing the UV cutoff term Λ in our theory and taking it into account.

1.3 Shape function and cutoff scheme dependence

In this section we have a brief excursus on the possible cutoff term choices that have been

mainly used in the literature, considering a general environment with arbitrary curved

spacetime, arbitrary number of fields and eventual gauge internal degrees of freedom of

the fields. There are obviously several regulator choices we can do and we expect all the

physical meaningful results to be independent of our arbitrary choice of it, provided it’s

right asymptotic behavior. This would be the case if we could get an exact evaluation of

our equations. But, as we will see in section 1.7, when dealing with a flow equation for

our average effective action we are forced to introduce some approximations, such as a

non-perturbative one called truncation, and this introduces an inevitable cutoff scheme

dependence. We faces a disappointing situation, where observable property of nature

seems to depend on our personal choice of implementing an interpolation between 0

and∞. But, as we saw, this is only the result of our approximations and, luckily, there

are several observed results that reassure in believing in this approach. In fact, all the

perturbative results about QFT performed with the effective average action technique

are consistent with the perturbative ones for every choice of the regulator. Moreover

many qualitative results obtained for the first time with this non-perturbative approach

in a specific truncation are consistent and quite independent of any reasonable choice of

the cutoff term. Therefore it seems reasonable to accept the scheme dependence, also
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considering that it introduces an approximation in our result usually negligible when

compared to the other necessary approximations.

The most natural choice for constructing a reasonable shape function is starting

from the inverse propagator Γ(2) of our general theory

Γ
(2)
k (x, y)AB =

δ2Γk[φ̄]

δφ̄B(y)δφ̄A(x)
(1.32)

The reason is that a correct cutoff should appear everywhere the derivative of the

kinetic term does, acting as a conventional mass-like IR regulator dependent from the

eigenvalues of the derivative operator. For generality purpose, we will now consider the

case of a covariant derivative, but everything keep valid if we deal with a standard one.

The fluctuation matrix Γ2
k(x, y)AB may contain kinetic terms also in the off diagonal

entries and in such a case we need RABk not to be diagonal. The simplest way to solve

this problem is replacing

−∇2 −→ Pk(−∇2) ≡ −∇2 + R̄k(−∇2) (1.33)

everywhere it appears in the inverse propagator, where R̄(p2) is a scalar function veri-

fying 1.23 and ∇ is a covariate derivative, both with respect to the gravitational field

and to other gauge connections coupled to the internal degrees of freedom. In such a

way we get

Γ
(2)
k (x, y)AB −→ Γ̂

(2)
k (x, y)AB (1.34)

and we can define

Rk(x, y)AB ≡ Γ̂
(2)
k (x, y)AB − Γ

(2)
k (x, y)AB (1.35)

If we work with flat spacetime and without gauge internal degrees of freedom, the

covariant derivative reduces to the standard one, and if we deal with only one field we

can write

Rk(x, y)AB ≡ zφR̄k(−∂2) (1.36)

where zφ is called ”field strength” and correspond to the factor multiplying the kinetic

term in the effective average action. We are now left with the arbitrary choice of the

shape function R̄k. Such a choice must get to terms with our possible different purposes.
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The most intuitive and radical choice is that of a divergent cutoff

R̄k(p2) ≈

∞ if p2 << k2

0 if p2 >> k2
(1.37)

for example a simple choice is the ”sharp cutoff”

R̄k(p2) = lim
Λ→∞

Λ θ(k2 − p2) (1.38)

This kind of cutoff completely suppress all the fluctuations of momenta out of our

rang of interest. But such a cutoff family with a singular behavior result problematic

for calculations and often less adapted to imitate physical cutoff appearing in many

physical situations. Therefore in the literature it is often utilized a cutoff with the

following asymptotic behavior

R̄k(p2) ≈

k
2 if p2 << k2

0 if p2 >> k2
(1.39)

If we deal with a shape function of this kind, it is often comfortable to write

R̄k(p2) = k2R0(
∂2

k2
) (1.40)

where the dimensionless shape function R0(p2) interpolates between 0 for small k2 and

1 for large k2. The most common choices are that of the ”optimized cutoff”

R0(z) = (1− z)θ(1− z) (1.41)

and the ”exponential cutoff”, parametrized by the shape parameter s

R0(z, α) =
αz

eαz − 1
(1.42)

The optimized cutoff is better for analytical evaluation of many integrals while the

exponential one affords more precise calculations and allows to check the scheme de-

pendence of the results thanks to the shape parameter s. Another suitable family of

cutoff functions derived from the optimized one is

R0(z, α) = (z−α − z)θ(1− z) (1.43)
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which are quite easy to handle for calculations, in particular with the choice of α = d/2.

Finally, another often used cutoff term is the so called ”Callan-Zymanzic cutoff”

R̄k(p2) = k2 (1.44)

A worrying doubt about the consistency of the cutoffs satisfying 1.37 shall arise from the

system of units choice. In fact, as we will see in 1.8, it is often reasonable and sometimes

necessary to set k as dimensional reference unit. In such a case, the dimensionless cutoff

term loose it’s divergent asymptotic behavior for large k and, in the k →∞ limit, there

is still quantization [24].

1.4 Exact Renormalization Group Equation

Now we are ready to develop a functional flow equation governing the behavior of

the average effective action with respect to the sliding scale k [22] [3] [21]. As a first

step we introduce the dimensionless parameter t = log
k

k0
, called RG time, which will

parametrize the k-dependence of Γk[φ̄] in our flow equation. It is also useful to rewrite

the cutoff term in momentum space

∆kS[φ] =
1

2

∫
ddp

(2π)d
φA(−p)RABk (p2)φB(p) (1.45)

where the trace Tr mean a continuous momentum integration as well as a matrix trace

and we omitted the Fourier transform label φ̃A for notational semplicity. Considering

the source J as k-independent and calculating the t-derivate of Zk[J ], from 1.20 we get

∂tZ[J ] = −1

2

∫
Dφ

∫
ddp

(2π)d
φA(−p)∂tRABk (p2)φB(p)e−S[φ]−∆kS[φ]+<φAJ

A>

= −1

2

∫
ddp

(2π)d
δ

δJA(−p)
∂tRABk (p2)

δ

δJB(p)
Zk[J ] (1.46)

from 1.24 we have

∂tWk[J ] = −1

2
Tr

[
∂tRk{

δ2Wk[J ]

δJδJ
+
δWk[J ]

δJ

δWk[J ]

δJ
}
]

(1.47)

where, using the relation shown in figure1.3, we recognize

δ2Wk[J ]

δJA(x)δJB(y)
+
δWk[J ]

δJA(x)

δWk[J ]

δJB(y)
= G

(2)
c,AB(x, y) + φ̄A(x)φ̄B(y)

= G
(2)
d,AB(x, y) (1.48)
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and so we can write

∂tWk[J ] = −1

2
Tr
[
∂tRkG

(2)
d [J ]

]
(1.49)

From 1.27 it is easy to show that G
(2)
k Γ̃

(2)
k = 1 and, using 1.27 again, we can obtain

∂tΓ̃k[φ̄] =
1

2
Tr

[
∂tRk

(
Γ̃

(2)
k [φ̄]

)−1
]

+ ∂t∆kS[φ̄] (1.50)

and, finally, using 1.25 and 1.27, we get the exact RG flow equation

∂tΓk[φ̄] =
1

2
Tr

[
∂tRk

(
Γ

(2)
k [φ̄] + Rk

)−1
]

(1.51)

It is interesting to note that, thanks to the regulator Rk, the ERGE is always well

defined. In fact, the presence of Rk in the denominator together with 1.23 guarantees

the IR regularization of the trace integration, while the UV regularization is preserved

thanks to the derivative ∂tRk, which force the main contribution of the integration to

lie on a momentum shell near p2 ∼ k2.

∂tΓk =
1

2&%
'$

C

∂tWk = −1

2&%
'$

D

Figure 1.2: Diagammatic representation of equations 1.47 and 1.51. The straight line represent

the modified propagator G2
k respectively connected C and disconnected D (fig.1.3) while the

square vertex represent the t-derivative of the cutoff term ∂tRk.

����D = ����C + ����C ����C

Figure 1.3: Diagrammatic representation of the relation between the Disconnected and the

Connected 2-points Green’s functions.
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1.5 ERGE and perturbative loop expansion

Although the flow equation we obtained has a one-loop structure, as a consequence

of ∆kS being quadratic in the field, it is nevertheless an exact and non-perturbative

equation, thanks to the presence of the exact propagator in the loop integration. Per-

turbative loop expansion can be derived from the ERGE simply expanding the average

effective action in ~

Γk[φ̄] = Γ0−l
k [φ̄] + ~Γ1−l

k [φ̄] + ~2Γ2−l
k [φ̄] + . . . (1.52)

remembering the presence of ~ in the rhs of the ERGE (we omitted while working in

natural units) we get

∂tΓ
0−l
k [φ̄] = 0

Γ0−l
k [φ̄] = S[φ̄] (1.53)

In the same way we can derive the 1-loop approximation

∂tΓ
1−l
k [φ̄] =

1

2
Tr

[
∂tRk

(
∂2S
∂φ̄∂φ̄

+ Rk
)−1

]

Γ1−l
k [φ̄] =

1

2
Tr log

[
∂2S
∂φ̄∂φ̄

+ Rk
]

+ Const. (1.54)

which, for k → 0, coincide with the standard one loop approximation of the effective

action. We can see the analogy between the ERGE and the one loop equation for the

effective action, the latter being an improved version of the former, obtained simply

replacing the bare action with the effective one in the loop integration and adding a

cutoff term. We can push forward our expansion to every perturbative order.

1.6 Balanced Coarse-Graining

The generating functional Z[J ] can be achieved through a functional integration over

the field fluctuations, which can be seen as a d-dimensional generalization of the path

integral in phase space. The integration, having place over the configuration variables

q and their conjugate momenta p, is performed with a Liouville measure µ(q, p) and,

under the hypothesis of an Hamiltonian quadratically dependent on the conjugate mo-

menta, the p-integration can be performed separately reducing the path integral to an
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integration of the Lagrangian action over the configuration space with a new measure,

symbolically represented by µ(q) = µ(q, p)(det(−∂2
t ))

1
2 . In the path integral there are

many sources of divergences, coming from the integrations over both the configura-

tion and momentum variables and from the path integral Liouville measure, that, in a

skeletonized version, can be seen as the product of infinite many phase space Liouville

measures, everyone being the square root of the determinant of the symplectic form.

In QM, all these singular contributions need to cancel each other in order to get a

finite path integral result. In our approach to the functional integration, we simply

forgot about the momentum integration and we derived the EAA by modifying the La-

grangian action and performing the q integration leaving the measure unchanged. But

such a procedure does not preserve the mutual cancellation process of the divergences

arising in the integration, and the finiteness in QM of the result is no more guaranteed.

We will now introduce an alternative way to achieve a weighted functional integration

without altering the pattern of cancellations of the divergences. This approach, called

”Balanced Coarse-Graining”, was firstly introduced by Vacca and Zambelli [24] and

consists in the introduction of a regularization term in the functional integration as a

consequence of the insertion of a mode-dependent operator in the symplectic structure.

After the momentum integration has been performed, this more general approach will

bring to a configuration space measure with an implicit momentum scale dependence

related to the cutoff term, and this will allow to achieve a modified Wetterich RG flow

equation which will bring to many comforting results.

1.6.1 Balanced Coarse-Graining and Quantum Mechanics

As a first step we will now introduce a Balanced Coarse-Graining framework for a

quantum mechanical bosonic oscillator, corresponding to the QM transposition of a

0+1 dimensional real scalar field theory. We introduce an Hamiltonian quadratically

dependent on the momentum p

H[p, q] =
1

2
p2 + V [q] (1.55)

and the unmodified Euclidean path integral

Z[J ] =

∫
DqDp µ(q, p) e

∫
dt[ip(t)∂tq(t)−H[q(t),p(t)]+J(t)q(t)] (1.56)
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We can now change the integration variables introducing P (t) = p(t) − i∂tq(t) and

simplify

Z[J ] =

∫
DqDP µ̃(q, P ) e

∫
dt[− 1

2
(∂tq(t))

2−V [q(t)]− 1
2
p(t)2+J(t)q(t)]

=

∫
Dq µ(q) e−S[q]+〈q,J〉 (1.57)

where

〈q, J〉 =

∫
dtJ(t)q(t) (1.58)

S[q] =

∫
dt

(
1

2
(∂tq(t))

2 + V [q(t)]

)
(1.59)

µ(q) = µ(q, p)(det(−∂2
t ))

1
2 (1.60)

as can be achieved performing the path integral for a free particle.

In chapter 1.2 we introduced a modified generating functional

Zk[J ] =

∫
dq µ(q) e−S[q]−∆kS[q]+〈q,J〉 (1.61)

simply adding to the bare action S[q] a regulator term

∆kS[q] =
1

2

∫
dt q(t)Rk(−∂2

t )q(t) =
1

2

∫
dt q(t)

∆k(−∂2
t )

−∂2
t

q(t) (1.62)

acting as a weight in the functional integration over the configuration variable q. In

such a way, we regularize the integration over the configuration variable leaving the

momentum integration and the Liouville measure unchanged, and therefore we modify

the pattern of cancellations of the divergences in an inconsistent way. It is possible

to show that equation 1.61 can be achieved starting from a k-dependent phase space

path-integral

Z[J ] =

∫
DqDp µ(q, p) e

∫
dt[i
√

1+∆k(−∂2
t )p(t)∂tq(t)−H[q(t),p(t)]+J(t)q(t)] (1.63)

and substituting

P (t) = (1 + ∆k(−∂2
t ))

1
4 p(t)− i(1 + ∆k(−∂2

t ))
3
4∂tq(q) (1.64)

Therefore, the introduction of the regularization term in the path integral can be inter-

preted as the result of implementing a modified Legendre transform leaving the bare



22 CHAPTER 1. THE EXACT RENORMALIZATION GROUP EQUATION

Hamiltonian unchanged. But the Legendre transform and the Liouville measure µ are

not independent, as the Legendre transform term p(t) ∂tq(t) is the pull back of the

Liouville 1-form λ = p dq and the Liouville measure µ is just the square root of the

determinant of the symplectic form σ = dλ.

µ = (Detσ)
1
2 = (Det(dλ))

1
2

In order to get the required modified Legendre transform, we must introduce the mod-

ified quantities

λk =
√

1 + ∆k λ σk =
√

1 + ∆k σ µk =
√

Det(1 + ∆k) µ (1.65)

Therefore, we are forced to introduce a modified Liouville measure in the path integral

in order to get a balanced an coherent regularization. If we work with canonically con-

jugated variables q, p such as [q, p] = 1, the unmodified Liouville phase space measure

reduces to µ(q, p) = 1 and we get to the final formulation for the average generating

functional

Zk[J ] =

∫
Dq (Det(1 + ∆k))

1
2
(
Det(∂2

t )
) 1

2 e−S[q]−∆kS[q]+〈q,J〉 (1.66)

and, proceeding as in section 1.4, we can get a balanced version of the Wetterich RG

flow equation

∂tΓk[φ̄] =
1

2
Tr

[
∂tRk

(
Γ

(2)
k [φ̄] + Rk

)−1
]
− 1

2
Tr
[
∂tRk

(
−∂2

t + Rk
)−1
]

(1.67)

1.6.2 Balanced Coarse-Graining and QFT

The generalization of the Balanced Coarse-Graining framework to a d-dimensional QFT

is straightforward. We firstly introduce the Hamiltonian describing our system

H[φ, π] =

∫
ddx

1

2
π(x)2 +

1

2
|∇φ(x)|2 + V [φ(x)] (1.68)

and we write the generating functional through the Euclidean path integral

Z[J ] =

∫
DφDπµ[φ, π]e

∫
ddx iπ∂0φ(x)−H[φ,π]+〈φ,J〉

=

∫
Dφ µ[φ] e−S[φ]+〈φ,J〉 (1.69)
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with

S[φ] =

∫
ddx

1

2
(∂0φ(x))2 +

1

2
|∇φ(x)|2 + V [φ(x)] (1.70)

As we did in the QM framework, we can introduce a modified k-dependent Legendre

transform in order to introduce a regulator term in the functional integration∫
ddx iπ∂0φ(x) −→

∫
ddx iπ(1 + ∆k)

1
2∂0φ(x) (1.71)

and, consequently, introducing the modified Liouville measure and proceeding as before,

we get

Z[J ] =

∫
Dφ µ[φ] (Det(1 + ∆k))

1
2 e−S[φ]− 1

2

∫
ddx∂0φ∆k∂

0φ+〈φ,J〉 (1.72)

But while in a QM theory this is sufficient to fully regularize the functional integration,

now the modified Legendre transform is not able to weight the spatial field oscillating

modes ∂iφ∂
iφ, and the only way to achieve this result is to introduce a k-dependent

term the bare Hamiltonian

H̃[φ, π] = H[φ, π] +
1

2

∫
ddx ∂iφ(x)∆̃k∂

iφ(x) (1.73)

and, therefore

Z[J ] =

∫
Dφ µ[φ] (Det(1 + ∆k))

1
2 e−S[φ]− 1

2

∫
ddx∂0φ∆k∂

0φ− 1
2

∫
ddx∂iφ∆̃k∂

iφ+〈φ,J〉 (1.74)

Generally, the regulators terms ∆k and ∆̃k are independent and we intentionally omit-

ted their arguments, as many choices are possible [24]. We will now restrict to the most

natural choice of a Lorentz invariant cutoff simply setting ∆k = ∆̃k and making them

dependent on the Lorentz invariant D’Alembert operator −∂2 = −∂µ∂µ. Under these

assumptions, we can derive the modified Wetterich equation

∂tΓk[φ̄] =
1

2
Tr

[
∂tRk

(
Γ

(2)
k [φ̄] + Rk

)−1
]
− 1

2
Tr
[
∂tRk

(
−∂2 + Rk

)−1
]

(1.75)

with the usual notation

Rk(−∂2) = −∂2 ∆k(−∂2) (1.76)
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1.6.3 Effective Average Action and high k limit

If we are quantizing a classical theory, it is obviously necessary to satisfy the high

energy limit

lim
k→∞

Γk[φ] = S[φ] (1.77)

in order to have an accessible boundary condition in the evaluation of the RG flow.

Moreover, such a condition is also fundamental if we want to derive AS conclusions

about the model we are developing and, finally, it is necessary if we want to get some

informations about the classical theory we are quantizing, to start from the knowledge

of the effective one. But, as we saw in section 1.2, using the standard derivation for

the EAA the regulator term act as a non-normalized delta function in the high k limit.

This problem is naturally solved using the balance approach to the coarse-graining. In

fact, starting from the modified path integral, we can get the following formulation for

the EAA

e−Γk[φ] =

∫
Dφ µk[φ]exp{−S[φ]−∆kS[φ− φ̄] +

∫
ddx(φ− φ̄)

δΓk[φ̄]

δφ
} (1.78)

and in the high k limit, under the assumption of Rk →∞ for k →∞ and working with

canonically conjugated variables, we find∫
Dφ

(
Det(∂2)Det(1 + ∆k)

) 1
2 e−

1
2

∫
ddx(φ−φ̄)Rk(φ−φ̄) −→ 1 (1.79)

and the classical limit is restored. Unfortunately, the condition Rk →∞ for k →∞ is

not always granted, as we saw in 1.3, and many often used smooth cutoff terms do not

satisfy this request when we set k as fundamental unit.

1.7 RG trajectory in theory space and truncation

In the previous section we introduced a non perturbative differential functional equation

describing the flow of the effective average action under the variation of k. Now we are

going to address the main properties of this flow and to introduce an approximation

necessary for a non perturbative approach to the analysis of it’s trajectory. As a

consequence of the physical meaning we attributed to the average effective action,

we understand that this functional contains all the relevant information describing a
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QFT at a fixed characteristic scale. Therefore we can interpret the flow of Γk as a

flow in the space of all physically acceptable theories, represented by the set of all

functionals possessing the symmetry properties characterizing our physical system. We

can parametrize this infinite dimensional manifold Q introducing the basis operators

Θi,k[φ], comprising all local and non-local operators constructed with the fields and

their derivatives and compatible with the symmetries of our system. The existence of

a complete basis for the space of the allowed functionals is not guaranteed, but we will

always assume this to be the case. Generally the basis elements can flow with k, as

expressed from the k-label we introduced in our notation, but for simplicity we will now

assume them to be k-independent without loosing generality, because of the arbitrary

choice of the basis. We can now identify every functional with a particular set of the

couplings {gi}, which are the basis elements of the dual of the operators space, and

write

Γk[φ] =
∑
i

gi,kΘi[φ] (1.80)

Taking the k derivative of Γ we get

∂tΓk[φ] =
∑
i

∂tgi,kΘi[φ] =
∑
i

βi,kΘi[φ] (1.81)

and, using the ERGE, we can get an infinite-dimensional differential system

βi = βi(g, k) (1.82)

Dealing with such a system of infinite equation is technically impossible, and the only

chance we have to get quantitative results from it is to reduce the number of the basis

elements to an arbitrary finite quantity N . In such a way we force the flow to lie on a

N -dimensional hypersurface W projecting the real trajectory on the finite dimensional

subspace 1. This approximation is called ”truncation” and is evidently unnatural, as

in every momentum variation δk infinite many non-zero terms are generated from the

ERGE. There is no rigorous way to discriminate a good truncation from a bad one,

the only thing we can do is to use many different truncations and check the reliability

1Also a finite dimensional subspace could be used instead of a finite dimensional one. In such a

case, it is not possible to achieve a differential system of coupled equations for the couplings, but it is

nevertheless possible to investigate the system using other numerical techniques.
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of the results. Although there are many natural prescriptions helping us to build a

reasonable truncation; first of all, our truncation must be consistent, in the sense that,

for example, if we expand the effective average action in an arbitrary way end we choose

the maximal order of the expansion to keep in the truncation, we also must keep in the

truncation all terms up to that order. A second useful prescription is that of trying to

include in the truncation all the physically relevant degrees of freedom. It is not enough

if we try to include in our truncation all the couplings which mainly differ from zero

during the flow: a good truncation is not one for which neglected terms are small but

one for which the effect of the neglected terms on the included ones is small. A direct

and easy way to check the quality of a truncation is that of measure the cutoff scheme

dependence of our observable quantities. We will now show this analysing the effect of

truncation on the cutoff scheme dependence of our trajectory in the theory space.

While dealing with the complete space theory and the exact ERGE solution, the

internal points of our trajectory possess a natural cutoff scheme dependence, as we can

understand considering that different cutoff terms means different field fluctuations

integrated out, while the initial and final points of our flow are obviously independent

of Rk, as they represent the bare and effective action, this thanks to the imposition that

all the cutoff terms have the same asymptotic behavior 1.23. Moreover, all the universal

and observable quantities, implicitly independent of any characteristic scale k, must also

be scheme independent as, for example, happen of the characteristic exponentials. But

when we project our flow on a finite-dimensional subspace, different trajectories with

the same asymptotic behavior could turn into till different trajectories belonging to the

same subspace but now with different asymptotic behavior. This happens because it is

quite different to project the exact trajectory obtained with the ERGE on a subspace

than constructing an approximated flux forced to lie on the same subspace. As a

consequence all the universal quantities acquire a cutoff scheme dependence which will

be as wide as the truncation is unable to describe the correct flow and forces the

trajectory to lie on a subspace distant from it.
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(a) (b) (c)

Figure 1.4: Graphical representation of (a) the cutoff scheme dependence of the RG trajectory

in theory space obtained without any truncation; (b) the truncation effects on the RG trajectory.

(c) the cutoff scheme dependence of the RG trajectory in the theory space after a truncation is

introduced.

1.8 Field redefinition and system of units

In the previous section we asserted the space of all functionals compatible with the

required symmetries to be equivalent with the space of all physically acceptable theories.

We will now specify our assertion, showing that actually the latter is equivalent with

a subspace obtained dividing the former through classes of equivalence. Indeed it is

possible to build a group of allowed functional transformations leaving unaffected the

physical meaning of our theory [25]. First of all we shall consider our functional Γk(φ, gi)

as actually acting on the Cartesian product F ×Q, where F is the infinite-dimensional

space of all field configurations with the fields φA(x) as coordinates. As the fields φ

are involved in our calculations only as integration variables, it is clear that shall exist

a group G of allowed field redefinition leaving unaffected the theory we are developing.

G must evidently submit all the symmetry requirements of our system and, as Γ[phi]

is the most general functional satisfying the required symmetries, we can always find a

representation D of G acting on the space of all the coupling constant Q such as

Γk(Tφ, gi) = Γk(φ,D(T −1)gi) (1.83)

In such a way we get an equivalence relationship acting on the space of the coupling

constants and this allows us to work in a subspace with n dimensions less than Q, where

n is the dimension of the group G. We will call the coordinates of the reduced subspace
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essential coupling constants, in contrast with the redundant ones we eliminated. Thus,

we are able to fix the value of arbitrary n couplings g1...gn to a constant arbitrary value

ḡ1...ḡn for all the flow of our functional and to study the trajectory parametrized by

the only essential couplings. Actually, the choice of the n couplings to be fixed and

considered as redundant is not completely arbitrary. In fact we must choose n linearly

independent couplings which are not invariant under the action of D, as an invariant

coupling constant is independent from the equivalence transformations an can not be

fixed with an opportune choice of T . The most simple field redefinition is that of a

field rescaling φ′A(x) = c−1φA(x), where c is an arbitrary dimensionless parameter. Such

a transformation of the field leave unaffected the physical meaning of the theory we are

developing and we can simply construct a representation of this transformation acting

in the space of couplings and, through it, designate a redundant coupling.

We can make a similar observation about the system of units we are dealing with

[14]. A very common an useful choice is that of using the so called natural units,

where we impose } = c = 1. In this way, all the dimensional units become linearly

dependent to only one fundamental and arbitrary unit. There are several reasonable

choices we can make about our reference unit and obviously our final physical theory

will be independent of the arbitrary choice we make. We can show this exploiting the

scale invariance of any bare action

S(bdAφA, b
digi) = S(φA, gi) (1.84)

where b is an arbitrary dimensionless parameter and dA/i are called the canonical

dimensions of φA/gi. The scale invariance can be exported to the average effective

action, provided we rescale also the scale parameter k with the factor b.

Γbk(b
dAφA, b

digi) = Γk(φA, gi) (1.85)

We usually choose the system of units to work with case by case, according to our

purposes. The most common and intuitive choice for it is that of using a dimensional

universal measurable quantity independent from our theory such as the electron mass

if we are dealing with QCD. This choice is called of ”external units”. But such a choice

isn’t always possible. Sometimes there is no scale-independent dimensional quantity, as
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for example happens when dealing with a QFT concerning gravity, and we are forced

to choose an internal fundamental unit. The most natural choices are that of using

the UV cutoff Λ, when present, that is the limit of validity of an effective theory, or

otherwise the scale parameter k, parametrizing the flow of our average effective action.

We will use this last choice in the rest of our work, a choice that will reveal to be the

most useful and natural for the study of the ERGE flow. Choosing to use k as internal

unit means we have to evaluate all the dimensional quantities comparing them with

the scale of our theory, and affords as natural consequence the choice of the RG time

t = log
k

ko
, introduced in 1.4 and parametrizing the flow equation, as we see from

∂

∂t
= k

∂

∂k
(1.86)

Using k as fundamental unit is equivalent to associate to each coupling the correspond-

ing dimensionless parameter

ǧi,k = gi,kk
−di (1.87)

and to study their flow according to the dimensionless beta functions.

β̌i,k = ∂tǧi,k = −diǧi,k + k−diβi (1.88)

These dimensionless couplings are more fundamental than the dimensional ones, and

there are many physical, mathematical and statistical arguments justifying the use of

them [26] .

We have shown that the physical meaning of our theory is preserved under field

redefinition and under scale transformations and that we can exploit this feature to

fix once and for all the value of n irrelevant coupling constants and to set the scale

parameter k = 1, working with dimensionless couplings rather than with dimensional

ones. We can technically implement this introducing a complete RG transformation

structured in three phases:

• The ERGE evaluation under an infinitesimal scale variation δk. In this way we

account the contribution to the average effective action variation coming from the

functional integration over field fluctuations.

• A field rescaling, adapted to set the value of the redundant couplings to the

prefixed one.
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• A scale redefinition associated to the spacetime, allowing to restore k = 1 and

equivalently to study the flow of the dimensionless couplings instead of the di-

mensional ones.

It is interesting to mark that, if we deal with a QFT concerning gravity and we

quantize the metric tensor gµ,ν , the second and third point belong to the same trans-

formation, as a metric redefinition means a rescaling of the space and is equivalent to a

scale redefinition. In this situation, we are forced to abandon the point two with regard

to the metric tensor and to evaluate the flow of all the gravitational coupling constants

in our truncation.

Another interesting remark belonging to the choice of setting k = 1 through a scale

redefinition was already introduced in section 1.3. In fact, if we define a cutoff satisfying

conditions 1.39, such as, for example, cutoff 1.40 with 1.41 or 1.42 inserted, if we use k

as dimensional reference unit we find that the regulator loose its asymptotic behavior

for k →∞. This means that in the high energy limit there is still quantization and we

loose the Γk → S limit, as we already mentioned in 1.6.3 [24].
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1.9 Asymptotic Safety

We will now come back to an exact model in the absence of truncation and we will try

to introduce some criteria establishing when an effective theory could be well defined

at every energy scale (fundamental) and predictive. For this purpose we consider the

absence of any UV cutoff, represented by the Λ → ∞ limit. Since now we have been

defining our QFT starting from a given bare action S and the generating functional, in

a standard way, and we have derived the ERGE as a tool for a step by step functional

integration of the field fluctuations. But we also may adopt a different perspective, and

define a QFT which relies on the flow equation, once a suitable initial condition S is

assumed. We may go one step further and, instead of the bare action, take as boundary

condition of the RG flow the average effective action Γ referred to an arbitrary scale k.

This means that our theory will be completely defined once the theory space has been

fixed, the shape function R has been chosen and we have impose d the initial condition

at an arbitrary scale k. In such a way, we could hope to measure some observable

quantities of our theory at the energy scale k and use them to obtain the value of

any coupling constant at the same energy scale gi,k. We could then use the ERGE to

achieve the beta functions and reconstruct the whole trajectory of our theory, getting a

complete and predictive model describing the system we are interested in. Unluckily, as

we saw in 1.7, there are infinitely many coupling constants to be determined, ad this can

be achieved only with an infinite number of experiments. In such a situation our theory

unavoidably loose its predictivity, as it is unthinkable to experimentally fix infinitely

many parameters. In the following we will try to fix this issue through the requirement

of a fundamental theory, in an analogue way as renormalizability prescriptions do in the

perturbative approach to QFT. We call fundamental a theory which is effective at every

finite energy scale k. In order to get this, our theory must be well defined for every

k. There are many ways a theory could lose its effectiveness and assume pathological

behavior during its flow, as for example some symmetries intrinsic in the system we

are studying could be broken or new degrees of freedom could arise, making our model

inadequate to describe our system at such an energy scale. But the most worrying

situation is that of the divergence of some observable quantities, as a consequence of the

divergent behavior of some dimensionless couplings. Therefore, a necessary condition

for a fundamental theory is that all the dimensionless essential couplings should be
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finite at every energy scale, therefore also in the k →∞ limit.

We know that the ERGE allows to express the beta functions in terms of Γk and

its derivatives. This imply that we can get the infinite-dimensional system

β̌i = β̌i(ǧ) (1.89)

In order to deal with finite dimensionless couplings also in the k → ∞ limit the must

natural request, nevertheless it is not the only possible scenario [13], is that of the

existence of an high energy finite limit for them

ǧi,k → ǧ∗i for k →∞

β̌i,k → 0 for k →∞ (1.90)

We define the fixed point ǧ∗ in the space of couplings as the solution of the system.

β̌i(ǧ
∗) = 0 (1.91)

Clearly there could be more than one FPs and we must analyse our system case by case

if we want to have qualitative informations about them. We will call ”Gaussian” a fixed

point characterized by all the couplings being set to zero and it is possible to show that

the Gaussian FP exist for every QFT, as it corresponds to the free theory configuration.

If at a certain energy scale our system is described by a theory with couplings in a FP of

the flow, the theory will remain unchanged at every energy scale and we will be dealing

with a scale invariant field theory, possibly conformal. Such a theory doesn’t require any

RG flow equation to be described, as all the necessary information is contained in the

FP. A more interesting situation is that of a theory asymptotically approaching the FP

for high k. We can analyse such a situation introducing the shifted coupling constants

g̃i = ǧi − ǧ∗i and linearising the RG flow and the beta functions in the neighbourhood

of the FP

∂tg̃i =M j
i g̃j +O

[
(g̃)2

]
(1.92)

introducing the stability matrix

M j
i =

∂β̌i
∂ǧj

∣∣∣∣
ǧ=ǧ∗

(1.93)
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This matrix is not necessary symmetric and, where diagonalizable, it may have some

non real eigenvalues. Under the hypothesis of the diagonalizability we can write

M =
∑
r

Pvrθr (1.94)

where (θ1...θr...) are the eigenvalues of M and (Pv1 ...Pvr ...) are the projectors on the

subspace generated by the corresponding eigenvectors (v1
i ...v

r
i ...). We can now approx-

imate the flow of the couplings in the proximity of the FP with

ǧi,k − ǧ∗i,k = g̃i,k =
∑
r

drv
r
i e
θrlog

k

ko (1.95)

Following this considerations we find that, in order to get the asymptotic behavior we

need for our theory, we must impose the coupling constants to lie on the hypersurface

generated from all the attractive directions, namely all the eigenvectors for which the

correspondent eigenvector θi satisfies Re[θi] < 0. This represents a fine-tuning problem.

In fact, if we slightly perturb our flow in any repulsive direction, we loose our asymptotic

finite behavior. Thus, if we request reality to be described from a meaningful theory at

arbitrary high energy, we need an infinite precision tuning of the coupling constant at an

arbitrary finite energy scale k. Usually the opposite of the real part of the eigenvalues

θr are also called critical exponent

br = −Re[θr] (1.96)

and if our coupling constants are chosen in such a way that M is naturally diagonal,

as usually happens, we can identify the eigenvectors with the coupling themselves and

we call relevant the ones with positive critical exponent and irrelevant those for which

the critical exponent is negative. Finally we call UV critical surface the hypersurface

spanned by all the relevant eigenvectors, i.e. a surface parametrized by all the relevant

couplings and defined by the condition g̃i = 0∀ i irrelevant. It is interesting to note

that the permitted trajectories are not asked to lie on the UV critical surface, but only

to asymptotically approach the FP through it, as the linear approximation we used is

valid only in the neighbourhood of the FP.

We can now come back to our initial problem. We have shown how we can guarantee

that our theory remain ”finite” when k → ∞, thanks to the presence of a FP and to
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the fine tuning of our trajectory in the theory space. But we want our theory to be

predictive, that is the bare action to be fixed through a finite number of experiments.

In the perturbative approach to QFT this problem is solved by the prescription of

renormalizability. When we evaluate the vacuum-vacuum graphs contributing to the

effective action, we find that an infinite number of divergences arises, unless all the

dimensional coupling with negative mass dimensions are set exactly to 0. In this way,

we reduces the number of relevant diagonal interactions to a finite one, and our theory

become predictive. In an analogous way we can now use our prescription of finite high

energy limit of our theory for reducing the number of the degrees of freedom in our

model. Obviously we will obtain a predictive theory only if the UV critical surface is

finite-dimensional. We will call ”asymptotically safe” (AS) a QFT for which exists a

non-Gaussian FP with a finite number of attractive directions. In an AS scenario it

is always possible to achieve a fine tuning of the couplings making our theory finite

also in the high energy limit, and this fine tuning is sufficient to make our theory also

predictive.

Figure 1.5: Graphic 2-dimensional representation of an AS scenario. The dashed line represent

a safe trajectory, approaching the FP through the UV critical surface.
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1.10 AS and Asymptotic Freedom

The perturbative expansion holds appropriate only when dealing with small couplings

and consequently it allows a good approximation of our system only if we are in presence

of a Gaussian FP. In such a situation we expect the non perturbative and perturbative

approach to give consistent qualitative predictions about the allowed degrees of freedom

in our theory. Starting from a representation of the Effective Action as the sum over

all the 1PI graphs with external lines connected to the external sources J, we may

employ a perturbative approach. In such a case, adopting the power counting criterion

and assuming for shortness we are dealing with scalar fields, it is easy to show that we

can express the superficial degree of divergence of a graph G in term of the number of

external lines E , the number of vertices with n legs Vn and the number of spacetime

dimensions D [19] .

ω(G) = D − (D − 2)E
2

+
∑
n

Vn
(
n(D − 2)

2
−D

)
(1.97)

As a graph introduce a new primitive divergence whenever ω(G) > 0, we find that

infinite many kind of primitive divergences are present in the graph sum unless

D − n(D − 2) ≥ 0 (1.98)

As D − n(D − 2) is also the dimension of the coupling corresponding to a vertex

with n legs, it means that coupling with negative mass dimension are forced to be

zero in the bare action S in order to make our theory renormalizable. Such negative

mass dimension couplings are called perturbatively non-renormalizable. Contrarily all

the positive mass dimension are clearly allowed, as they introduce a finite number of

divergent diagrams, and therefore they are called super-renormalizable. A special care

is needed when dealing with dimensionless coupling constants, because in such a case

we deal with infinite many divergent graphs, but only a finite number of divergent

graphs types are allowed, where a graph type mean a graph with a certain number of

external lines. In such a case it is still possible to renormalize our theory and we call

such coupling constants renormalizable. We can now analyse the same situation of a

GFP in a AS framework focusing on the dimensionless beta functions 1.88

β̌i = −diǧi + k−diβi (1.99)
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As gi = 0 also mean βi = 0 because of the internal structure of the ERGE, the charac-

teristic exponent of the couplings turn out to coincide with their canonical dimensions.

In order to get an AS theory we must set all the couplings with negative critical expo-

nent exactly to their FP value, and in our case this means all the non-renormalizable

couplings with negative mass dimension must be set to zero while all the positive mass

dimension super-renormalizable couplings represent allowed interactions in our model.

Some more care is needed when studying the behavior of the dimensionless couplings,

in the same way as happens when using the perturbative expansion.

The fact that the renormalizability and the AS prescriptions lead to the same pre-

dictive theory when a loop expansion approach is viable thanks to the presence of a

GFP, lead us to interpret the AS as a generalization of renormalizability for non AF

theories. There are many situations non-renormalizable in the perturbative sense which

may be included by this new definition of renormalizability, such as for example the

quantization of the gravitational tensor field using the Einstein-Hilbert truncation[16]

[17] [8] [9] [27] [15] [25]. In this case we find that a NGFP exist with two non null cou-

plings g0 and g2, where the first coupling is proportional to the vacuum energy Λ and

the second coupling is proportional to the inverse of the gravitational constant G. The

critical exponent are invariant under regular coordinate transformations in the space of

all couplings, but the transformation G ∼ (g2)−1 is singular at the GFP while it is obvi-

ously regular at the NGFP. Because of this, the model result to be non-renormalizable

with perturbation theory but nevertheless asymptotically safe.

We have seen as the AS prescription could be a powerful criterion to construct

a fundamental and predictive theory, i.e. a theory effective at every energy scale and

capable to make quantitative predictions after a process of calibration has been achieved

through a finite number of experiments.

In order to get this, we are forced to introduce a fictitious fine-tuning of the coupling

constants, which are forced to lie on the finite-dimensional hypersurface comprising all

the points in the couplings space asymptotically approaching the FP through the UV

critical surface for high k in their flow. This infinite precision ad-hoc tuning of nature

can move to many philosophical interpretations. Furthermore there is no experimental

way to check if our theory really lies on the safe hypersurface or if it is not the case, as

an arbitrarily small distance from it, also if smaller than every observable experimental
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accuracy, would lead to an asymptotically divergent and so intrinsically effective theory.

Therefore, the AS approach is a very powerful tool for studying the UV asymptotic

behavior of our theories and represent an interesting direction in the attempt to get a

fundamental theory describing nature, but till now it remain a theoretical hypothesis

far from being proved and has some almost philosophical connotations.
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Chapter 2

ERGE at work in LPA

We will now implement the formalism we developed in the previous chapter focusing

on a d-dimensional real scalar field theory and working with the balanced version of

the Wetterich equation. We will introduce a quite simple truncation often used in

the literature called ”Local Potential Approximation” and we will achieve the RG

flow equations for the dimensional and dimensionless couplings adopting the optimized

cutoff term, which strongly simplifies our calculations.

2.1 Local Potential Approximation

As we saw, the ERGE is an exact integro-differential equation involving the functional

Γ[φ] and we could hope to completely solve this equation with appropriate boundary

conditions, without exploiting any particular approximation. Unfortunately, one can

hope to achieve this only numerically, due to the intrinsic non-linearity of the flow,

and it is in practice impossible also numerically, for general Γ[φ]. Therefore, if we are

interested in analytical results we are forced to introduce a truncation in our model.

The space of allowed functionals for a standard D-dimensional QFT belonging to a

single real scalar field admits all the functionals satisfying the required symmetries,

such as a φ → −φ invariance in the case of a Z2 invariant theory. It is the case of all

the local potential terms ∫
ddxV [φ(x)] (2.1)

39
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the n order derivative terms∫
ddxH[φ(x)](∂2)n1φ(x)(∂2)n2φ(x) (2.2)

and the non-local terms∫
ddxφ(x) log(−∂2)φ

∫
ddxφ(x)(∂2)−nφ(x) (2.3)

and therefore all these terms represent admissible candidates to be inserted in our

truncation. We will now restrict to a simple and often used approximation which

consists in introducing an arbitrary local potential term together with the simplest

1-order derivative term representing the standard kinetic operator

Γk[φ] =

∫
ddx

(zφ
2
∂µφ(x)∂µφ(x) + V [φ(x)]

)
(2.4)

Moreover, it is sometime useful to expand the effective potential V [φ] in a power

expansion

V [φ] =
∞∑
n=0

gnφ
n (2.5)

where, in the case of a Z2 invariant theory, we will only consider the n = 2m with m

integer terms.

As we remember from 1.8, there are some invariance properties we can exploit to

simplify our model. We know that the physical meaning of our theory is invariant under

appropriate field redefinitions, as for example it is evidently the case for a field rescaling

φ′(x) = c−1φ(x). This can be exported to our functional introducing an adapted allowed

functional transformation leaving unchanged the corresponding physical theory

Γk(c
−1φ, c2zφ, c

ngn) = Γk(φ, zφ, g2n) (2.6)

We can use this invariance property to fix one and for all the wave function renor-

malization parameter zφ = 1 by introducing the renormalized field, representing the

actual field whose correlations we measure

φR =
√
zφφ (2.7)

The other invariance we deal with belongs to the dimensional analysis and, as

we saw, the most well-advised choice consists in setting the scale parameter k as the
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fundamental unit. In such a way, we can introduce the dimensionless renormalized field

and potential

φ̌ = k−( d−2
2 )√zφφ (2.8)

v̌[φ̌] =

∞∑
n=0

ǧnφ̌
n = k−dV [k−( d−2

2 )√zφφ] (2.9)

which will flow as follow

∂tφ̌ = −
(
d− 2

2
+
ηφ
2

)
φ̌ (2.10)

∂tv̌[φ̌] = −dv̌[φ̌] +
(d− 2 + ηφ)

2
φ̌
∂v̌

∂φ̌
[φ̌] + k−d∂tV [φ] (2.11)

β̌n = −
(
d− n

2
(d− 2 + ηφ)

)
ǧn + k−(d−n2 (d−2))z

−n
2

φ βn (2.12)

where ηφ is defined by ηφ = −
żφ
zφ

and is called anomalous dimension because it affords a

modification to the canonical dimension d−2
2 in the scaling properties of the field φ and

the reason of its existence is that the t-derivatives are performed at fixed dimensional

φ.

The terms introduced in the flow of φ̌ and v̌[φ̌] by the rescaling can be interpreted

as a consequence of performing, in every iteration of the RG process, an infinitesimal

field rescaling transformation 2.6 with c = 1 − 1

2
ηφ∂t and a dimensional rescaling

transformation 1.85 with b = 1 − ∂t. In the following we will show how to obtain

∂tV [φ] and ηφ using the ERGE, in order to achieve all the necessary elements for the

evaluation of the flow of the dimensionless renormalized couplings we are interested in.

2.2 Constant field approximation and effective potential

The ERGE (1.67) equates two functionals of φ and must be satisfied for every field

configuration. Therefore, we can consider the simple situation of constant field φ(x) = φ

and, under the assumption 2.4, the flow equation reduces to

∂tV [φ]

∫
ddx =

1

2
Tr

[(
−zφ ∂2 + V (2)[φ] + Rk(−∂2)

)−1
∂tRk(−∂2)

]
−1

2
Tr
[
∂tRk

(
−zφ ∂2 + Rk

)−1
]

(2.13)
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where, in this case, we can obtain the trace performing a Fourier Transform

Tr
[
f(−∂2)

]
=

∫
ddq

(2π)d
f(q2)

∫
ddx =

V ol(Sd−1)

(2π)d

∫
dqqd−1f(q2)

∫
ddx (2.14)

If we want to proceed in the calculation we are forced to choose a particular cutoff

term to work with, and in order to get simple analytical results we will now use the

optimized cutoff 1.41. Substituting, we get

1

zφ q2 + V (2)[φ] + Rk(q2)
=

θ(q2 − k2)

zφq2 + V (2)[φ]
+

θ(k2 − q2)

zφk2 + V (2)[φ]
(2.15)

and

∂tRk(q2) = zφ(2k2 − ηφ(k2 − q2)θ(k2 − q2) (2.16)

finally, substituting and integrating, we get

∂tV [φ] =
V ol(Sd−1)

2(2π)d

(
1

zφk2 + V (2)[φ]
− 1

zφk2

)∫ k

0
dqqd−1zφ

(
(2− ηφ) k2 + ηφq

2
)

=
kdV ol(Sd−1)

d(2π)d

(
1−

ηφ
d+ 2

) 1

1 + V (2)[φ]
zφk2

− 1



=

kd21−d
(

1−
ηφ
d+ 2

)
dΓ
[
d
2

]
πd/2

 1

1 + V (2)[φ]
zφk2

− 1

 (2.17)

and we can now write the flow equation for the dimensionless renormalized potential

∂tv̌[φ̌] = −dv̌[φ̌] +
(d− 2 + ηφ)

2
φ̌
∂v̌

∂φ̌
[φ̌] +

21−d
(

1−
ηφ
d+ 2

)
d Γ

[
d
2

]
πd/2

(
1

1 + v̌(2)[φ̌]
− 1

)
(2.18)

This is a partial differential equation for the dimensionless potential v̌[φ̌]. A possible

way to analyse the flow of the dimensional potential is to assume reliable a power series

representation for V [φ]. Expanding in series the rhs denominator of equation 2.17 and

equating the corresponding field operators assuming the power expansion 2.5, we can

write the explicit flow equations for the dimensional couplings

βo =

kd21−d
(

1−
ηφ
d+ 2

)
d Γ

[
d
2

]
πd/2

 1

1 + 2g2

zφk2

− 1

 (2.19)

βn∗>0 =

kd21−d
(

1−
ηφ
d+ 2

)
d Γ

[
d
2

]
πd/2

(
1 + 2g2

zφk2

) ni>0∑
n1+..+nm=n∗

[
(−1)mB[n̄]

(zφk2 + 2g2)m

m∏
i=1

gni+2(ni + 1)(ni + 2)

]
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where

B[n̄] =
m!

h1!..hr!
(2.20)

with n1..nm divided in r groups everyone containing hj identical valued ni

r∑
j=1

hj = m n
ij1

= n
ij2

= ... = n
ijhj

(2.21)

and the derivation of the flow for the dimensionless couplings is straightforward. The

last ingredient we need in order to achieve a complete differential system is the anoma-

lous dimension ηφ. It is possible to show that, if we work with a Z2 invariant theory

and we study the ground state φ = 0 using the simple truncation in 2.4, the integra-

tion over the field fluctuations generates no contribution to the field strength zφ and

the anomalous dimension ηφ is identically zero. This is similar to what happens in

perturbation theory when we analyse the field anomalous dimension of a Z-2 invariant

system at one loop. Generally this is not true but, as we will see next, setting ηφ = 0 is

however a good approximation in many situations. Under this hypothesis, we dispose

of a complete differential system describing the flow of infinite many couplings and we

can try to solve it. The t-derivatives of an arbitrary coupling gn depends on all the

couplings up to the order n + 2, therefore the only chance to get a solution for some

couplings is that of fixing a maximal allowed order nmax in our truncation, setting all

the remaining couplings to zero, and try to solve the finite differential system for the

remaining couplings. As a further approximation, we could decide to solve our system

setting all the couplings on the rhs of our equation fixed to their original value. We can

repeat this procedure n-times, always using on the rhs the couplings achieved solving

the previous iteration. If we use the vacuum configuration field φ = 0 as reference and

we deal with couplings close to their GFP value, this procedure allows us to achieve

n-loop results, but It is important to stress that, as we are working with a differential

system for the couplings achieved using a truncation for the EAA, all the n > 1 loop

results will only be an approximation of the ones obtained in perturbation theory.
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2.3 Anomalous dimension

We will now show how it is possible to exploit the ERGE to achieve a closed formula

for the anomalous dimensions in the LPA truncation. Firstly we can use the definition

(2π)dδd (p1 + ..+ pn) Γ
(n)
k (p1, .., pn) =

∫
ddx1...

∫
ddxne

i
∑
j pjxj

δnΓk
δφ(x1)...δφ(xn)

(2.22)

to get the 2-point vertex according to the truncation 2.4

Γ
(2)
k,p = zφp

2 + V ′′[φ] (2.23)

Such a 2-point vertex approximation is accurate in a small p regime. Luckily, the

presence of the regulator in the ERGE trace causes only low momentum fluctuations to

be relevant in the integration, making such a truncation adapted for a good evaluation

of the flow. We can now exploit the same relation to get a formula for the flow of Γ
(2)
k,p

(2π)d δ(p1 + p2) Γ̇
(2)
k,p1

=
δ2Γ̇k

δφ(p1)δφ(p2)
(2.24)

and, substituting 1.51, we can use the relations

δ

δφp
Gk;q = −Gk;qΓ

(3)
k;p,q,−p−qGk;q+p (2.25)

and

δ

δφ−p

(
−Gk;qΓ

(3)
k;p,q,−p−qGk;q+p

)
= 2Gk;qΓ

(3)
k;p,q,−p−qGk;q+pΓ

(3)
k;p+q,−p,−qGk;q

−Gk;qΓ
(4)
k;p,q,−p,−qGk;q (2.26)

where

Gk;q =
(

Γ
(2)
k;q + Rk;q

)−1
(2.27)

to get a closed formula for the flow of the 2-point vertex

Γ̇
(2)
k,p =

∫
ddq

(2π)d
Gk;qΓ

(3)
k;p,q,−p−qGk;q+pΓ

(3)
k;p+q,−p,−qGk;qṘk;q

−1

2

∫
ddq

(2π)d
Gk;qΓ

(4)
k;p,q,−p,−qGk;qṘk;q (2.28)

where the two contributions on the rhs correspond to the vertices showed in figure 2.1.

We note that this equation is valid for every QFT and for every truncation we adopted.
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Figure 2.1: Diagrammatic representation of the graphs contributing to the flow of the 2-point

vertex.

In our situation of a scalar field in LPA approximation, we find the n-point vertex with

n > 2 to be independent of the momentum incoming pi

Γ
(n)
k;Pq1...qn

= V (n)[φ] (2.29)

and, therefore, our equation strongly simplifies.

Γ̇
(2)
k,p =

(
V (3)[φ]

)2
∫

ddq

(2π)d
G2
k;qGk;q+pṘk;q −

V (4)[φ]

2

∫
ddq

(2π)d
G2
k;qṘk;q (2.30)

It is easy to show that the only momentum dependent contribution to the 2-point

function flow comes from the first term of the rhs of equation 2.30, and we can write

∂tV
(2)[φ] =

(
V (3)[φ]

)2
∫

ddq

(2π)d
G3
k;qṘk;q −

V (4)[φ]

2

∫
ddq

(2π)d
Gk;qGk;qṘk;q (2.31)

∂tzφ =
(
V (3)[φ]

)2
∫

ddq

(2π)d
∂Gk;q+p

∂p2

∣∣∣∣
p=0

G2
k;qṘk;q (2.32)

The choice of using the p2 derivatives of Γ̇
(2)
k,p calculated in p = 0 to fix the field strength

variation will reveal to be a good choice, as we are interested in the small-p behavior of

Γ
(2)
k,p and our truncation Γ

(2)
k,p = zφp

2 + V ′′[φ] is accurate only in this regime. It is also

possible to construct an equation for the flow of the entire self energy Σ(p2)

∂tΣ(p2) =
(
V (3)[φ]

)2
∫

ddq

(2π)d
G2
k;q(Gk;q+p −Gk;q)Ṙk;q (2.33)

but this goes beyond our truncation and it is not a consistent result because it has been

obtained under the truncation hypothesis. Moreover, with this approach it is possible

to find the flow of Γ
(n)
k;p1,..,pn

conserving the entire derivative dependence also when it



46 CHAPTER 2. ERGE AT WORK IN LPA

is evaluated at constant φ and in a general truncation and cutoff scheme. This can be

achieved for every n and, therefore, we can expand the ERGE in function of the n-point

vertices.

Γ̇
(n)
k;p1,..,pn

= Bn

[
Γ

(2)
k , ..,Γ

(n+2)
k ; p1, .., pn)

]
(2.34)

But, again, such a system can be solved only numerically. It is finally interesting to

use equation 2.31 to test the validity of our previous results.

2.4 Anomalous dimension with optimized cutoff

If we consider an optimized cutoff, we can still use the relations 2.15 and 2.16 and we

can try to make explicit the field strength variation by evaluating

δ

δp2
Gk;p+q

∣∣∣∣
p=0

∼=
1

2d

δ2

δpµδpµ
Gk;p+q

∣∣∣∣
p=0

=
1

2d

δ2

δqµδqµ
Gk;q

= − 1

2d

δ

δqµ
2zφq

µ

(zφq2 + V (2)[φ])2
θ(q2 − k2)

= − 1

2d

4zφq
2

(zφq2 + V (2)[φ])2
δ(q2 − k2) + θ(q2 − k2)Fq,zφ,k2,V (2)

= −2

d

zφk
2

(zφk2 + V (2)[φ])2
δ(q2 − k2) (2.35)

as the term proportional to θ(q2 − k2) will not contribute to the integration thanks

to the presence of a complementary theta coming from the regulator’s t-derivative.

Moreover, we find that in the presence of the δ(p2 − k2) term forcing q to acquire k

value, the regulator derivatives term reduces to

∂tRk(q2) = zφ(2k2)θ(k2 − q2) (2.36)

Finally we note that actually in the integration there is only one θ(k2−q2) term coming

from the correlation functions, as in the φ expansion no more theta term is generated

δ

δφ

1

zφk2 + V (2)[φ]
θ(k2 − q2) =

V (3)[φ]

(zφk2 + V (2)[φ])2
θ(k2 − q2)

... (2.37)
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Therefore, we can now calculate the flow of the field strength

∂tzφ = −4V (3)[φ]2

d

∫
ddq

(2π)d
z2
φk

4

(zφk2 + V (2)[φ])4
θ(k2 − q2)δ(k2 − q2)

= −4V ol(Sd−1)

d (2π)d
V (3)[φ]2z2

φk
4

(zφk2 + V (2)[φ])4

∫
dqqd−1θ(k2 − q2)δ(k2 − q2)

= −4V ol(Sd−1)

d (2π)d
V (3)[φ]2z2

φk
2+d

(zφk2 + V (2)[φ])4

∫
dz

2
θ(k2 − z)δ(k2 − z)

= −V ol(S
d−1)

d (2π)d
V (3)[φ]2z2

φk
2+d

(zφk2 + V (2)[φ])4

= −21−dV (3)[φ]2

d Γ[d2 ]π
d
2

z2
φk

2+d

(zφk2 + V (2)[φ])4
(2.38)

and therefore, recalling relations 2.8 and 2.9, we can achieve the following transforma-

tion rules

v̌(2)[φ̌] = k−2z−1
φ V (2)[k−( d−2

2 )z
1
2
φ φ]

v̌(3)[φ̌] = k
d
2
−3z
− 3

2
φ V (3)[k−( d−2

2 )z
1
2
φ φ] (2.39)

and, substituting, we can write a relation for the anomalous dimension expressed as a

function of the dimensionless renormalized couplings

ηφ =
21−d

d Γ[d2 ]π
d
2

v̌(3)[φ̌]2

(1 + v̌(2)[φ̌])4
(2.40)

2.5 Z-rule and VEV

Since now we omitted a conceptual problem which arises in our calculations because of

the approximation employed. In all our equations describing the flow of zφ we find an

implicit dependence on the field configuration φ through the effective potential terms

v̌(2)[φ̌]and v̌(3)[φ̌], while in our truncation the field strength is independent from any

field configuration. Therefore, we are forced to introduce a preferential field value φ̂k

under which the field strength flow has to be evaluated. These new scheme dependence

is called ”Z-rule” and is a natural consequence of our LPA truncation, as in a general

effective action all the generated terms would be allowed and there would be no need

for preferential field configuration in order to get a complete theory. The choice of φ̂k is
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completely arbitrary, but the most natural thing we can do is to give a physical meaning

to the preferred field configuration, such as for example the vacuum expectation value

VEV, i.e. the minimum of the potential, as our reference field configuration for the

evaluation of the anomalous dimension. This coincides with the choice of φ̂k = 0 in the

case of a symmetric potential without symmetry-breaking, otherwise we will be driven

to introduce a non-trivial choice, as we will see further. We will now show how it is

possible to implement the Z-rule in our flow, by focusing on the effective average action

and the effective potential in the neighbourhood of the reference field configuration φ̂k.

As a first step we can introduce the shifted effective average action

Γ̂k[φ] = Γk[φ+ φ̂k] (2.41)

and the shifted effective potential

V̂k[φ] = Vk[φ+ φ̂k] (2.42)

=
∞∑
n=0

ĝk,nφ
n (2.43)

where

ĝk,m = gk,m +
∞∑
n=1

(
n+m

n

)
gk,n+mφ̂

n
k (2.44)

We can now study the flow of the effective potential

∂tV̂k[φ] = V̇k[φ+ φ̂k] + V ′k[φ+ φ̂k]∂tφ̂k (2.45)

=
∞∑
n=0

(
βn(k, ĝ1, ..ĝn, ...) + (n+ 1) ĝk,n+1∂tφ̂k

)
φn (2.46)

=

∞∑
n=0

β̂n(k, ĝ1, ..ĝn, ...)φ
n (2.47)

Therefore, it is sufficient to add a shifting term (n + 1) ĝn+1∂tφ̂k to our original beta

functions βn in order to get a flow for our effective potential expanded around the

reference field φ̂k. Under the hypothesis of the reference field to be the stationary point

of the effective potential at the original momentum scale ko

ĝko,1 = 0 (2.48)
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it is sufficient to impose

β̂1(k, ĝ1, ..ĝn, ...) = 0

∂tφ̂k = − β̂1(k, ĝ1, ..ĝn, ...)

2ĝk,2
(2.49)

in order fix the reference field to the stationary point value for every k. As we expect,

this make sense only under the condition of ĝk,2 > 0, that is a positive mass effec-

tive theory, and in such a situation, assuming our local minimum to be also a global

minimum, the stationary point of the effective potential will coincide with the VEV.

Finally, we find

β̂n(k, ĝ1, ..ĝn, ...) = βn(k, ĝ1, ..ĝn, ...)− (n+ 1) ĝk,n+1
β1(k, ĝ1, ..ĝn, ...)

2ĝk,2
(2.50)

and the generalization to the dimensionless renormalized beta functions and couplings

is straightforward. Finally, as a consequence of this approach, the Z-rule comes natural

simply imposing φ = 0 in the evaluation of the anomalous dimension.

2.6 Euclidean anharmonic oscillator and vacuum energy

We will now explore the meaning of these results in the simple framework of a 0+1

dimensional real scalar field theory, corresponding to the QFT transposition of the

quantum mechanical anharmonic oscillator. In the power expansion of the effective po-

tential we will restrict to all the symmetric terms up to the 4-order, namely considering

only the couplings g0 = E , g2 = m
2 and g4 = λ

4! and we will work with dimensional

couplings, as this fairly simplify our calculations and it is sufficient for the considera-

tions we are interested in. As we restricted to a symmetric potential, from 2.40 we can

realize that actually there is no flow for the field strength zφ = 1 because of the simple

truncation choice and, from 2.19 we can get the equations

βk,E =
k3

π(k2 +mk)
− k

π
(2.51)

βk,m = − k3

π(k2 +mk)2
λk (2.52)

βk,λ =
6k3

π(k2 +mk)3
λ2
k (2.53)
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We can now get an approximated evaluation for the mass term simply by integrating

2.52 neglecting the flow of mk = m and λk = λ on the rhs: in such a way, we achieve the

same 1-loop approximation for the mass flow we would get with perturbative expansion

m1−loop
k = m+

1

4
λ

√
1

m
+

λ

2π

 k

k2 +m
−

tan−1
(

k√
m

)
√
m

 (2.54)

With an analogous procedure we can obtain a λ expansion for the vacuum energy ε0

simply solving eq 2.52 under the assumption of constant λ and inserting the result in

the rhs of eq 2.51

εo =
1

2

√
m+

3

4

√
m

(
λ

24m
3
2

)
− 87 + 24π2

16π2

√
m

(
λ

24m
3
2

)2

+ ... (2.55)

Comparing our 2-order result with the one achieved in a standard perturbation theory

framework,

εpto =
1

2

√
m+

3

4

√
m

(
λ

24m
3
2

)
− 105

40

√
m

(
λ

24m
3
2

)2

+ ... (2.56)

we find an exact agreement for the harmonic oscillator vacuum energy (λ = 0) and

the first perturbative expansion term in λ, while for higher terms the correspondence

is only approximated, as a consequence of the truncation we introduced. For example,

the second expansion term in λ achieved using the differential system belonging to the

LPA is approximatively 2.051 24−2m−
5
2 λ2, about a 20 percent inferior than the result

achieved in perturbation theory, that is 2.625 24−2m−
5
2 λ2.

Moreover, it is interesting to note that the − k
π term in equation 2.51 coming from

the Balanced Coarse-Graining prescription is fundamental in order to achieve a finite

result for the vacuum energy. Therefore, this is a comforting result both about the LPA

approximation and the Balanced Coarse-Graining approach, and comforting results also

comes from the strong-coupling regime analysis [10], where the ERGE approach through

LPA reveals to be much more accurate than the perturbative expansion in order to get

good quantitative results.

2.7 Some non perturbative results for scalar theories

We will now give a brief summary of the main asymptotic results about d-dimensional

real scalar field theories under the LPA truncation, focusing on symmetric models
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evaluated adopting φ = 0 as reference field.

In d=2 space-time dimension, a numerical investigation has shown that it is possible

to find a series of fixed points called ”multicritical fixed points” CFP. Their existence

was first discovered by Morris using a truncation that goes beyond the LPA introducing

a field-dependent field strength zφ. These fixed points correspond to some minimal

models of CFT and their anomalous dimensions are known exactly. Therefore, we

are able to compare our results with the exact ones and check the accuracy of our

truncation. We find that LPA provides good qualitative results, but an increased

truncation would lead to more accurate predictions and it is necessary in order to

achieve many features of the theory.

In d=3, it has been shown that a non-Gaussian fixed point still exist, called Wilson-

Fisher FP which, however, should be physically interpreted as an IR FP. It is neverthe-

less possible to compare the ERGE results about the W-F FP with the ones achieved

using numerical tools, finding a good accuracy of the LPA truncation outcomes in many

situations.

In d=4 the only FP is the Gaussian one, as we can see from 2.12. As the GFP

reveals to be repulsive in all the directions, we find the UV critical surface to coincide

with the FP itself, providing every fundamental theory to be trivial, non-interacting

and scale independent.
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Chapter 3

Non-Local Truncation

The Local Potential Approximation allows us to achieve accurate results in many situ-

ations, as that the presence of the cutoff derivative term Ṙk,q in the ERGE restricts the

field fluctuations contributing to the functional integration to the only ones with low

momentum q, and therefore approximating the n-point vertices to their zero-momentum

value introduces a small error in the flow of the couplings. But if we want to go be-

yond the LPA we are forced to consider a non-trivial momentum dependence for our

n-point effective average vertices and above all for the 2-point one. Moreover, there are

some physical situations in which the non-local behavior of the effective average action

become fundamental in order to achieve meaningful results. This appears fundamental

when analysing QCD at low energies in the regime close to the confinement. Erge

with non-local truncations has been able to give, for example, for the gluon propagator

results equivalent to the best available from Montecarlo analysis on lattice. Moreover,

one needs to consider such less trivial truncations in order to compute the vacuum en-

ergy for theories exactly massless. There are many ways to realize this, the simplest one

is the so called derivative expansion, consisting in the expansion of the 2-point vertex

Γ
(2)
p in powers of the momentum p. In this chapter, as our original work, we are going

to introduce an alternative way to achieve this result introducing a non-local trunca-

tion and comparing the achieved results with the ones obtained using other asserted

techniques.

53
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3.1 1-loop 2-point vertex

In order to understand the structure of non localities in the effective action it is useful

to derive the n-loop perturbative EAA starting from the ERGE. We will focus on the

2-loop expansion in a simple 1-dimensional real scalar QFT using the optimized cutoff,

in order to investigate the 1-loop non-local structure of the 2-point vertex and it’s

influence on the flow of the vacuum energy. As we saw in section 1.5, perturbative loop

expansion can be derived from ERGE expanding the average effective action in }

Γk[φ̄] = Γ0−l
k [φ̄] + ~Γ1−l

k [φ̄] + ~2Γ2−l
k [φ̄] + . . . (3.1)

In such a way, we can write the flow equation for the n-loop average effective action

∂tΓ
1−l
k [φ̄] =

1

2

∫
q
G

(2)0−l
k;q Ṙk;q

∂tΓ
2−l
k [φ̄] = −1

2

∫
q

(
G

(2)0−l
k;q

)2
Γ

(2)1−l
k;q Ṙk;q

∂tΓ
3−l
k [φ̄] =

1

2

∫
q

(
G

(2)0−l
k;q

)3 (
Γ

(2)1−l
k;q

)2
Ṙk;q −

1

2

∫
q

(
G

(2)0−l
k;q

)2
Γ

(2)2−l
k;q Ṙk;q

... ... (3.2)

with

Γ
(2)1−l
k;p =

1

2

∫
s>k

ds

s

∫
q

(
G(2)0−l
s;q

)2
Γ(4)0−l
s;q,q,p,p Ṙs;q −

∫
s>k

ds

s

∫
q

(
G(2)0−l
s;q

)2
G

(2)0−l
s;q+p

(
Γ(3)0−l
s;q,q,p

)2
Ṙs;q

... ... (3.3)

with a little work, it is possible to compute analytically the first terms in this expansion

in the simple framework of a d-dimensional scalar field theory using the optimized cut-

off. These calculations are given in appendix A, where the 1-loop momentum-dependent

structure of the 2-point vertex is investigated together with the 2-loop vacuum energy

term. In the appendix we find a quite complex analytical expression for Γ
(2)1−l
k;p , but

the momentum shape of this 2-point function seems to be well-described by a regular

monotonous-increasing limited function at every scale k. Moreover, the momentum

shape of Γ
(2)1−l
k;p for different scale k can be well-fitted by a rescaling and shifting of

the same momentum-dependent function. Therefore, we can introduce a parameter-

dependent function able to fit the momentum shape of the 1-loop 2-point vertex for an
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opportune choice of the parameters and hope such a function to accurately fit also the

exact 2-point vertex for appropriate values of the parameters, probably different from

the former one. Such an assumption is evidently strong and objectionable, as there

is no real reason suggesting such a behavior, but achieving the perturbative analytical

n-loop 2-point vertex for n > 2 is quite an hard task and in any case we would like to go

beyond perturbation theory in principle. Thus, at present the most reasonable way to

test this assumption is to assume it first, and than compare the obtained results with

the asserted ones. furthermore, in chapter 4 we will introduce a more rigorous test for

this assumption, developing a non-perturbative tool able to investigate the momentum

dependence of Γ
(2)1−l
k;p .

1 2 3 4 5
p

0.9990

0.9992

0.9994

0.9996

0.9998

G
H2L

k, p

Figure 3.1: Graphical representation of the 1-loop 2-point effective average vertex structure

Γ
(2)1−l
k;p at different energy scales k for a 1-dimensional real scalar field theory described by

the bare potential V (2) = 1 and V (3) = 0.1. Solid-black line: effective result at the energy

scale k=0; dashed-blue line: effective average result at the energy scale k=0.5; dotted-red line:

effective average result at the energy scale k=1.
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3.2 Non-local 2-point vertex ansatz and 1-loop result in QM

The simplest analytical non-local ansatz for the 2-point vertex able to accurately fit

the perturbative 1-loop result in d=1 is

Γ
(2)1−l
k;p ≈ p2 +mk + σαk,βk; p (3.4)

with

σα,β; p =
αβ

α+ βp2
(3.5)

It is interesting to stress that the mk term in equation 3.4 is not a conventional mass

term, as for zero momentum p the non-local function σαk,βk; p produce a non-zero

contribution to the effective average potential. We can expand the behavior of our

ansatz for small-momenta

Γ
(2)1−l
k;p ≈ mk + βk +

(
1−

β2
k

αk

)
p2 +O

(
p4
)

(3.6)

and for high momenta

Γ
(2)1−l
k;p ≈ mk + αk

1

p2
+O

(
1

p4

)
(3.7)

As the derivative 1-loop contribution to the 2-point vertex Γ
(2)p−dep
k;p tend to 0 for

high momenta, we can identify the mk term in our truncation with the momentum-

independent 1-loop 2-point vertex contribution A.8

mk = mo + Γ
(2)p−ind
k;p = mo +

V (4)

4π

 2k

k2 + V ′′
−

2 tan−1
(

k√
V ′′

)
√
V ′′

+ π

√
1

V ′′

 (3.8)

and, therefore

σαk,βk; p ≈ Γ
(2)p−dep
k;p (3.9)

The most natural thing we can do in order to fit the 2-point vertex function is to use

equation A.19 and set

βk = Γ
(2)p−dep
k;0

= −
V 2
(
π
(
k2 +m

)2 − 2k
√
m
(
k2 −m

)
− 2

(
k2 +m

)2
tan−1

(
k√
m

))
8πm3/2 (k2 +m)2 (3.10)
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The only remaining parameter of the ansatz to be fixed is αk. We can try to set it’s

value both considering the high momentum behaviour of Γ
(2)p−dep
k;p

αk = p2 lim
p→∞

Γ
(2)p−dep
k;p

= −
V 2
(
π
(
k2 +m

)
− 2

(
k2 +m

)
tan−1

(
k√
m

)
+ 2k

√
m
)

2π
√
m (k2 +m)

(3.11)

or the small momentum behaviour

−
β2
k

αk
=

1

p2

(
lim
p→0

Γ
(2)p−dep
k;p − βk

)

=
V 2
(

3π
(
k2 +m

)3 − 2k
√
m
(
3k2 −m

) (
k2 + 3m

)
− 6

(
k2 +m

)3
tan−1

(
k√
m

))
96πm5/2 (k2 +m)3

(3.12)

We find that both the choices are possible in order to accurately fit Γ
(2)p−dep
k;p and they

bring to very similar results, as we can see in fig. 3.2. In the following, we will use the

high momentum behavior of the 2 point vertex for the calibration of the parameters, as

it will bring to simpler analytical results in the evaluation of the ERGE. It is interesting

to investigate how our approximation modify the 1-loop 2-point Green function in the

momentum range p < k contributing to the functional integration of the ERGE for

zero external momenta, and we find that in the 1-loop calculations the non-local ansatz

introduces, for p ' k, a small improvement of the results achieved using LPA with

non-trivial anomalous dimension, as we see in Fig. 3.3.
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Figure 3.2: In this figure, the momentum dependent contribution to the 1-dimensional per-

turbative 1-loop 2-point vertex A.19 is represented (solid-blue line) together with the non-local

ansatz of 3.9 calibrated in order to fit the high momenta behavior, using 3.10 and 3.11 (dashed-

green line) or the low momenta behavior, using 3.10 and 3.12 (dotted-red line). The results for

different bare actions and evaluated at different scales k are shown in the figures.
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Figure 3.3: Here the results of the 1-loop 2-point Green’s function achieved using different

approximations are shown: 1-dimensional perturbative 1-loop 2-point Green Function (solid-

blue line), result achieved by fitting the high momenta 2-point vertex behavior using 3.9, 3.10

and 3.11 (dashed-green line), result achieved by fitting the low momenta 2-point vertex be-

havior using 3.9, 3.10 and 3.12 (dotted-red line), Local Power Approximation with non-trivial

anomalous dimension evaluated at 1-loop (dot/dashed-gray line).

3.3 Non-local 2-point vertex truncation and ERGE

We will now use the ERGE in order to evaluate the RG flow of the couplings of a trun-

cation containing the LPA together with the non-local ansatz for the 2-point function

we introduced in 3.4

Γk[φ] =

∫
dx

(
1

2
∂µφ(x)∂µφ(x) +

1

2
φ(x)σαk,βk;∂ φ(x) + V [φ(x)]

)
(3.13)

with

σα,β; p =
αβ

α+ βp2
(3.14)

We will consider a potential containing all the terms up to the 4-order in φ

Vk[φ] =
4∑

n=0

gnφ
n (3.15)
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and we will introduce the shifted potential V̂ , as shown in section 2.5, in order to follow

the reference field configuration φ̂k = V EV during our flow

V̂k[φ] = Vk[φ+ φ̂k]

= εk +
mk

2
φ2 +

ρk
3
φ3 +

λk
4
φ4 (3.16)

It is useful to investigate the dimension of the couplings in our truncation using natural

units

[εk] = md; [mk] = [βk] = m2; [αk] = m4; [ρk] = m3− d
2 ; [λk] = m4−d (3.17)

Finally we will adopt the optimized cutoff term

Rk;q = (k2 − q2)θ(k2 − q2) Ṙk;q = 2k2θ(k2 − q2) (3.18)

providing the propagator

Gk;q =
1

(q2 +mk) +Rk;q

=
1

(q2 +mk + σαk,βk;q)
θ(q2 − k2) +

1

(k2 +mk + σαk,βk;q)
θ(k2 − q2)

(3.19)
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and, using the ERGE, we can achieve the flow of the coupling in d=1

∂tφ̂k =
ρk

2(mk + βk)

∫
dq

2π
(Gk;q)

2 Ṙk;q

=
k2ρk

2π (βk +mk)

k
(

αkβ
2
k

(k2+βk+mk)(k4βk+k2(αk+βkmk)+αk(βk+mk))
+ 2
)

(k2 +mk) 2

−

√
αk
√
βk
(
4k2 + 3βk + 4mk

)
tan−1

(
k
√
βk

√
k2+mk

√
αk

√
k2+βk+mk

)
(k2 +mk) 5/2 (k2 + βk +mk) 3/2

 (3.20)

∂tεk =
1

2

∫
dq

2π
Gk;qṘk;q −

1

2

∫
dq

2π
(q2 + Rk;q)−1Ṙk;q

= −k
π

k
√
bk
√
αk tan−1

(
k
√
bk
√
k2+mk

√
αk

√
bk+k2+mk

)
(k2 +mk) 3/2

√
bk + k2 +mk

+
mk

k2 +mk

 (3.21)

∂tmk = −1

2
λk

∫
dq

2π
(Gk;q)

2 Ṙk;q + ρk ∂tφ̂k

=
k2

2π

(
ρ2k

βk +mk
− λk

)k
(

αkβ
2
k

(k2+βk+mk)(k4βk+k2(αk+βkmk)+αk(βk+mk))
+ 2
)

(k2 +mk) 2

−

√
αk
√
βk
(
4k2 + 3βk + 4mk

)
tan−1

(
k
√
βk

√
k2+mk

√
αk

√
k2+βk+mk

)
(k2 +mk) 5/2 (k2 + βk +mk) 3/2

 (3.22)

∂tαk = ρ2k

∫
dq

2π
(Gk;q)

2 Ṙk;q

=
k2ρ2k
π

k
(

αkβ
2
k

(k2+βk+mk)(k4βk+k2(αk+βkmk)+αk(βk+mk))
+ 2
)

(k2 +mk) 2

−

√
αk
√
βk
(
4k2 + 3βk + 4mk

)
tan−1

(
k
√
βk

√
k2+mk

√
αk

√
k2+βk+mk

)
(k2 +mk) 5/2 (k2 + βk +mk) 3/2

 (3.23)

∂tβk = ρ2k

∫
dq

2π
(Gk;q)

3 Ṙk;q

=
k2ρ2k
4π

(
− 2kα2

kβ
3
k

(k2 +mk) 3 (k2 + βk +mk) (αk (k2 + βk +mk) + k2βk (k2 +mk)) 2

+
3kαkβ

2
k

(
4
(
k2 +mk

)
+ 3βk

)
(k2 +mk) 3 (k2 + βk +mk) 2 (αk (k2 + βk +mk) + k2βk (k2 +mk))

−
3
√
αk
√
βk
(
12βk

(
k2 +mk

)
+ 8

(
k2 +mk

)
2 + 5β2

k

)
tan−1

(
k
√
βk

√
k2+mk

√
αk

√
k2+βk+mk

)
(k2 +mk) 7/2 (k2 + βk +mk) 5/2

+
8k

(k2 +mk) 3

)
(3.24)
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∂tρk = 3λkρk

∫
dq

2π
(Gk;q)

3 Ṙk;q − 3ρ3
∫

dq

2π
(Gk;q)

4 Ṙk;q + λk ∂tφ̂k

=
3k2λkρk

4π
×
(

8k

(k2 +mk) 3

− 2kb3kα
2
k

(k2 +mk) 3 (bk + k2 +mk) (bk (k4 + k2mk + αk) + αk (k2 +mk)) 2

+
3kb2kαk

(
3bk + 4

(
k2 +mk

))
(k2 +mk) 3 (bk + k2 +mk) 2 (bk (k4 + k2mk + αk) + αk (k2 +mk))

−
3
√
bk
√
αk
(
12bk

(
k2 +mk

)
+ 5b2k + 8

(
k2 +mk

)
2
)

tan−1
(

k
√
bk
√
k2+mk

√
αk

√
bk+k2+mk

)
(k2 +mk) 7/2 (bk + k2 +mk) 5/2


+

k2λkρk
2π (bk +mk)

×k
(

b2kαk

(bk+k2+mk)(bk(k4+k2mk+αk)+αk(k2+mk))
+ 2
)

(k2 +mk) 2

−

√
bk
√
αk
(
3bk + 4

(
k2 +mk

))
tan−1

(
k
√
bk
√
k2+mk

√
αk

√
bk+k2+mk

)
(k2 +mk) 5/2 (bk + k2 +mk) 3/2


− k2ρ3k

8π
×
(

48k

(k2 +mk) 4

−
3
√
bk
√
αk
(
120b2k

(
k2 +mk

)
+ 144bk

(
k2 +mk

)
2 + 35b3k + 64

(
k2 +mk

)
3
)

tan−1
(

k
√
bk
√
k2+mk

√
αk

√
bk+k2+mk

)
(k2 +mk) 9/2 (bk + k2 +mk) 7/2

+
8kb4kα

3
k

(k2 +mk) 4 (bk + k2 +mk) (bk (k4 + k2mk + αk) + αk (k2 +mk)) 3

−
2kb3kα

2
k

(
19bk + 24

(
k2 +mk

))
(k2 +mk) 4 (bk + k2 +mk) 2 (bk (k4 + k2mk + αk) + αk (k2 +mk)) 2

+
3kb2kαk

(
72bk

(
k2 +mk

)
+ 29b2k + 48

(
k2 +mk

)
2
)

(k2 +mk) 4 (bk + k2 +mk) 3 (bk (k4 + k2mk + αk) + αk (k2 +mk))

)
(3.25)
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∂tλk = 3λ2k

∫
dq

2π
(Gk;q)

3 Ṙk;q − 18ρ2kλk

∫
dq

2π
(Gk;q)

4 Ṙk;q + 12ρ4k

∫
dq

2π
(Gk;q)

5 Ṙk;q

=
3k2λ2k

4π
×

(
8k

(k2 +mk) 3

− 2kα2
kβ

3
k

(k2 +mk) 3 (k2 + βk +mk) (αk (k2 + βk +mk) + k2βk (k2 +mk)) 2

+
3kαkβ

2
k

(
4k2 + 3βk + 4mk

)
(k2 +mk) 3 (k2 + βk +mk) 2 (αk (k2 + βk +mk) + k2βk (k2 +mk))

−
3
√
αk
√
βk
(
12βk

(
k2 +mk

)
+ 8

(
k2 +mk

)
2 + 5β2

k

)
tan−1

(
k
√
βk

√
k2+mk

√
αk

√
k2+βk+mk

)
(k2 +mk) 7/2 (k2 + βk +mk) 5/2


− 3k2λkρ

2
k

4π
×

(
48k

(k2 +mk) 4

+
8kα3

kβ
4
k

(k2 +mk) 4 (k2 + βk +mk) (αk (k2 + βk +mk) + k2βk (k2 +mk)) 3

−
2kα2

kβ
3
k

(
24k2 + 19βk + 24mk

)
(k2 +mk) 4 (k2 + βk +mk) 2 (αk (k2 + βk +mk) + k2βk (k2 +mk)) 2

+
3kαkβ

2
k

(
48k4 + 72k2βk + 24

(
4k2 + 3βk

)
mk + 29β2

k + 48m2
k

)
(k2 +mk) 4 (k2 + βk +mk) 3 (αk (k2 + βk +mk) + k2βk (k2 +mk))

−
(
144βk

(
k2 +mk

)
2 + 120β2

k

(
k2 +mk

)
+ 64

(
k2 +mk

)
3 + 35β3

k

)
×

3
√
αk
√
βk tan−1

(
k
√
βk

√
k2+mk

√
αk

√
k2+βk+mk

)
(k2 +mk) 9/2 (k2 + βk +mk) 7/2


+
k2ρ4k
16π

×

(
384k

(k2 +mk) 5

− 48kα4
kβ

5
k

(k2 +mk) 5 (k2 + βk +mk) (αk (k2 + βk +mk) + k2βk (k2 +mk)) 4

+
8kα3

kβ
4
k

(
40k2 + 33βk + 40mk

)
(k2 +mk) 5 (k2 + βk +mk) 2 (αk (k2 + βk +mk) + k2βk (k2 +mk)) 3

−
10kα2

kβ
3
k

(
96k4 + 152k2βk + 8

(
24k2 + 19βk

)
mk + 63β2

k + 96m2
k

)
(k2 +mk) 5 (k2 + βk +mk) 3 (αk (k2 + βk +mk) + k2βk (k2 +mk)) 2

+
15kαkβ

2
k

(
128k6 + 288k4βk + 232k2β2

k + 65β3
k + 128m3

k

)
(k2 +mk) 5 (k2 + βk +mk) 4 (αk (k2 + βk +mk) + k2βk (k2 +mk))

+
15kαkβ

2
k

(
96
(
4k2 + 3βk

)
m2
k + 8

(
48k4 + 72k2βk + 29β2

k

)
mk

)
(k2 +mk) 5 (k2 + βk +mk) 4 (αk (k2 + βk +mk) + k2βk (k2 +mk))

−
(
384βk

(
k2 +mk

)
3 + 480β2

k

(
k2 +mk

)
2 + 280β3

k

(
k2 +mk

)
+ 128

(
k2 +mk

)
4 + 63β4

k

)
×

15
√
αk
√
βk tan−1

(
k
√
βk

√
k2+mk

√
αk

√
k2+βk+mk

)
(k2 +mk) 11/2 (k2 + βk +mk) 9/2

 (3.26)
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Finally, we can numerically solve the differential system of the coupled equations

for arbitrary initial conditions. An example is given in figure 3.4.

-1.0 -0.5 0.5 1.0

-4

-2

2

4

6

Λ1

Ρ1

m1

Β1

Α1

Φ1

Ε1

Figure 3.4: RG Flow of the dimensionless couplings ǧi,k = gi,kk
−di from t=1 to t=-1 achieved

using the non-local truncation defined in 3.13, 3.16 for the initial conditions ε1 = φ̂1 = α1 =

β1 = 0, m1 = 0.1, ρ1 = 0.3, λ1 = 0.2 in d=1.

3.4 Approximation scheme for non-local 4-point vertex

ansatz

If we work with a Z2 invariant QFT with a momentum-independent 4-point vertex, no

momentum-dependent contribution to the 2-point vertex is generated, as we can see

from 2.28. Therefore, if we want to go beyond the LPA in a Z2 invariant framework,

we are forced to introduce a non-trivial momentum dependence of the 4-point vertex.

In order to do this, it is useful to introduce some approximations about the 4-point

vertex structure and it’s RG flow in d-dimension.
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First of all, using symmetry considerations it is possible to show that we can write

the 4-point scalar vertex as a function of the variables a, b and c defined as follow

Γ
(4)
k;p1,p2,p3,p4

= Γ
(4)
k;a,b,c


a = p1 + p2

b = p1 + p3

c = p2 + p3

(3.27)

and, inverting,

p1 =
a+ b− c

2
; p2 =

a− b+ c

2
; p3 =

−a+ b+ c

2
; p4 =

−a− b− c
2

(3.28)

Using the ERGE, we can evaluate the complete flow for the 4-point vertex:

Γ̇
(4)
k;a,b,c =

1

2

∫
ddq

(2π)d
Gk;qΓ

(4)
k;a, p1+q, p2+qGk;q+aΓ

(4)
k;a, p3−q, p1+p2+p3+qGk;qṘk;q

+permutations[a, b, c]− 1

2

∫
ddq

(2π)d
Gk;qΓ

(6)
k;p1,p2,p3,p4,q,−qGk;qṘk;q(3.29)
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Figure 3.5: Graphical representation of the flow of the 4-point vertex ∂tΓ
(4)
k;p1,p2,p3,p4

.

If we work with the optimized cutoff scheme the integration over the field fluctu-

ations, which contribute to the k derivative of ∂tΓ
(4)
k;a,b,c, is restricted to all momenta

lower than the scale k thanks to the presence of the cutoff term Ṙk;q in the ERGE

trace. Therefore, it is possible to evaluate equation 3.29 under the hypothesis of high

external momenta pi � k and approximate the fluctuation momenta q to zero in the

n-point vertex terms, reducing to

Γ̇
(4)
k;a,b,c =

1

2
Γ

(4)

k;a,a+b−c
2

,a−b+c
2

Γ
(4)

k;a, b+c−a
2

,a+b+c
2

J 3
k;a + permutations[a, b, c]

−1

2
Γ

(6)
k;p1,p2,p3,p4,0,0

I2
k (3.30)
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with

J nk;a =

∫
ddq

(2π)d
Gn−1
k;q Gk;q+aṘk;q (3.31)

Ink =

∫
ddq

(2π)d
Gnk;qṘk;q (3.32)

Such an approximation has been already tested by Blaizot, Mendez and Wschebor [6]

with good results.

It is now useful to construct a 1-loop perturbative expansion for the 4-point vertex

Γ
(4)
k;a,b,c

Γ̇
(4)1−loop
k;a,b,c = (Γ(4)0−loop)2

(
J 3 0−loop
a + J 3 0−loop

b + J 3 0−loop
c

)
− 1

2
Γ(6)0−loopI2 0−loop

(3.33)

and, without loosing generality, we can write

Γ
(4)1−loop
k;a,b,c =

1

3

(
γ1−loop
k;a + γ1−loop

k;b + γ1−loop
k;c

)
(3.34)

with

γ̇1−loop
k;a = 3(Γ(4)0−loop)2J 3 0−loop

a − 1

2
Γ(6)0−loopI2 0−loop (3.35)

If we force Γ
(4)
k;a,b,c to be of the form 3.34 at every perturbative order and we assume

γk;a = γk;−a for every a, equation 3.30 reduces to

Γ̇
(4)
k;a,b,c =

1

18

(
γk;a + γk;a+b−c

2
+ γk;a−b+c

2

)(
γk;a + γk;a+b+c

2
+ γk;a−b−c

2

)
J 3
k;a

+permutations[a, b, c]− 1

2
Γ

(6)
k;p1,p2,p3,p4,0,0

I2
k (3.36)

Let us now consider another approximation in order to strongly simplify this relation.

We can consider a truncation with a local 6-point vertex and approximate

γk;a
2

+ b−c
2

+ γk;a
2
− b−c

2
≈ γk;a

2
+ b+c

2
+ γk;a

2
− b+c

2
≈ 2γk;a

2
(3.37)

Such an approximation, that we will call “collinear simplification” in the following, is

not a priori justified from analytical considerations, as neither (b − c), (b + c) or γ′′k;a



3.4. APPROXIMATION SCHEME FORNON-LOCAL 4-POINT VERTEX ANSATZ67

are supposed to be small. Nevertheless this approximation is fundamental in order to

conserve the structure 3.34 we assumed for Γ
(4)
k;a,b,c during the RG flow, as it allows us

to consistently write

Γ
(4)
k;a,b,c =

1

3
(γk;a + γk;b + γk;c) (3.38)

γ̇k;a =
1

3

(
γk;a + 2γk;a

2

)2
J 3
k;a −

1

2
Γ

(6)
k I

2
k (3.39)

It is possible to improve such an equation evaluating separately the flow of γk;a

for zero momentum a = 0. In such a situation, the approximation we made of high

momenta is obviously inaccurate, and we should use the exact relation

γ̇k;a=0 = 3

∫
ddq

(2π)d
Gk;qΓ

(4)
k;0,q,−qGk;qΓ

(4)
k;0,−q,qGk;qṘk;q −

1

2
Γ

(6)
k I

2
k (3.40)

=
1

3

∫
ddq

(2π)d
(γk;0 + 2γk;q)

2 (Gk;q)
3Ṙk;q −

1

2
Γ

(6)
k I

2
k (3.41)

We can now use a similar approach in order to get an approximated equation for

the flow of the 2-point vertex. Starting from the ERGE we consider the exact flow

equation

Γ̇
(2)
k;p = −1

2

∫
ddq

(2π)d
Gk;qΓ

(4)
k;p+q,p−q,0Gk;qṘk;q (3.42)

and use the assumption of Γ
(4)
k;a,b,c to be of the form 3.38. Taking the BMW high external

momenta approximation, we can then write

Γ̇
(2)
k;p = −1

6
(2γk;p + γk;0) I2

k (3.43)

and, as we did for the flow of the 4-point vertex, it is possible to improve the flow

equation evaluating separately the flow for zero momentum p = 0.

Γ̇
(2)
k;p=0 = −1

6

∫
ddq

(2π)d
(2γk;q + γk;0) (Gk;q)

2Ṙk;q (3.44)

and, finally, if we want to achieve a momentum dependent function with the right

0-momentum behavior, we can write

Γ̇
(2)
k;p = −1

3
(γk;p − γk;0) I2

k + Γ̇
(2)
k;p=0 (3.45)
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3.5 Non-local Z-2 invariant truncation and ERGE

Using the BMW approximation of small internal momenta and the collinear simplifi-

cation, we achieved a system of flow equations compatible with the simplification of

equation 3.38. In such a way, the momentum dependent structure of the 4-point vertex

strongly simplify and we can investigate such a structure in order to introduce a suit-

able ansatz describing γk;p in a 1-dimensional theory. Comparing 3.35 with 3.3 we find

that the 1-loop contribution to the flow of γk;p has a very similar momentum-dependent

structure to the 1-loop contribution of the flow for the 2-point vertex. Therefore, we

can introduce an ansatz for γk;p with the same structure of the one we already used for

the 2-point effective average function

γk;p = λk + σµk,νk; p (3.46)

with, again,

σµ,ν; p =
µν

µ+ νp2
(3.47)

Moreover, from equation 3.43 we find that, under the BMW approximation, the mo-

mentum dependent structure of the 2-point vertex flow reproduces the momentum

dependent structure of γk;p. It is possible to show that the function σµ,ν; p verify the

property ∫ k1

ko

dkσµk,νk; p ≈ σµ̄,ν̄; p (3.48)

with

µ̄ =

∫ k1

ko

dkµk

ν̄ =

∫ k1

ko

dkνk

(3.49)

whenever µk and νk are regular monotonous positive (or negative) functions. Therefore,

as γk;p is supposed to verify these requests, it is reasonable to introduce again a similar
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ansatz for the 2-point vertex even in this more general truncation for Γk

Γ
(2)
k;p = p2 +mk + σαk,βk; p (3.50)

and we finally get

Γk[φ] =

∫
dx

(
1

2
∂µφ(x)∂µφ(x) +

1

2
φ(x)σαk,βk;∂ φ(x) +

1

4!
Σµk,νk [φ, x] + V [φ(x)]

)
(3.51)

with

Σµk,νk [φ, x] =
1

3

∑
s=a,b,c

∫ 4∏
i=1

(
dpi

(2π)d
φ̃(pi)

)
e−ix

∑
pi σµk,νk;s


a = p1 + p2

b = p1 + p3

c = p2 + p3

(3.52)

and

Vk[φ] =
2∑

n=0

g2nφ
2n

= εk +
mk

2
φ2 +

λk
4!
φ4 (3.53)

Adopting the optimized cutoff term 3.18 and using the ERGE, we can obtain

∂tεk =
1

2

∫
dq

2π
Gk;qṘk;q −

1

2

∫
dq

2π
(q2 + Rk;q)

−1Ṙk;q

=− k

π

k
√
bk
√
αk tan−1

(
k
√
bk
√
k2+mk

√
αk
√
bk+k2+mk

)
(k2 +mk) 3/2

√
bk + k2 +mk

+
mk

k2 +mk

 (3.54)
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Form equation 3.43 we can calculate the RG flow for mk

∂tmk = lim
p→∞

∂tΓ
(2)
k;p

=− 1

6
(3λk + νk)

∫
dq

2π
(Gk;q)

2 Ṙk;q

=− k2 (3λk + νk)

6π

k
(

αkβ
2
k

(k2+βk+mk)(k4βk+k2(αk+βkmk)+αk(βk+mk))
+ 2
)

(k2 +mk) 2

−

√
αk
√
βk
(
4k2 + 3βk + 4mk

)
tan−1

(
k
√
βk
√
k2+mk

√
αk
√
k2+βk+mk

)
(k2 +mk) 5/2 (k2 + βk +mk) 3/2

 (3.55)

and, from 3.43 and 3.44, we can achieve the flow of αk and βk

∂tαk = lim
p→∞

p2∂t

(
Γ

(2)
k;p − lim

p→∞
Γ

(2)
k;p

)
=− 1

3
µk

∫
dq

2π
(Gk;q)

2 Ṙk;q

=− k2µk
3π
×

k
(

αkβ
2
k

(k2+βk+mk)(αk(k2+βk+mk)+k2βk(k2+mk))
+ 2
)

(k2 +mk) 2

−

√
αk
√
βk
(
4
(
k2 +mk

)
+ 3βk

)
tan−1

(
k
√
βk
√
k2+mk

√
αk
√
k2+βk+mk

)
(k2 +mk) 5/2 (k2 + βk +mk) 3/2

 (3.56)
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∂tβk =∂t

(
Γ

(2)
k;0 − lim

p→∞
Γ

(2)
k;p

)
=− 1

3

∫
dq

2π
(γk;q − λk) (Gk;q)

2 Ṙk;q

=− k2µkνk
3π (βkµk (k2 +mk)− αkνk (k2 + βk +mk)) 2

×2 tan−1
(
k
√
νk√
µk

)
(βkµk − αkνk) 2

√
µk
√
νk

+
kαkβ

3
k

(
βkµk

(
k2 +mk

)
− αkνk

(
k2 + βk +mk

))
(k2 +mk) (k2 + βk +mk) (αk (k2 + βk +mk) + k2βk (k2 +mk))

+
(
αkνk

(
k2 + βk +mk

) (
4
(
k2 +mk

)
+ βk

)
+ βkµk

(
−k2 −mk

) (
4
(
k2 +mk

)
+ 3βk

))
×

√
αkβ

3/2
k tan−1

(
k
√
βk
√
k2+mk

√
αk
√
k2+βk+mk

)
(k2 +mk) 3/2 (k2 + βk +mk) 3/2

 (3.57)

using equation 3.39 we can achieve the flow equation for λk, that for the maximum

potential order in our truncation 2m = 12 is null

∂tλk = lim
p→∞

∂tγk;p

=− 1

2
ωk

∫
dq

2π
(Gk;q)

2 Ṙk;q

=0 (3.58)

and, using equations 3.39 and 3.41, we can achieve the flow equation for µk and νk

∂tµk = lim
p→∞

p2∂t

(
γk;p − lim

p→∞
γk;p

)
=3λ2

k

∫
dq

2π
(Gk;q)

2 Ṙk;q

=
3k2λ2

k

π
×

k
(

αkβ
2
k

(k2+βk+mk)(αk(k2+βk+mk)+k2βk(k2+mk))
+ 2
)

(k2 +mk) 2

−

√
αk
√
βk
(
4
(
k2 +mk

)
+ 3βk

)
tan−1

(
k
√
βk
√
k2+mk

√
αk
√
k2+βk+mk

)
(k2 +mk) 5/2 (k2 + βk +mk) 3/2

 (3.59)
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∂tνk =∂t

(
γk;0 − lim

p→∞
γk;p

)
=3

∫
dq

2π

(
γk;0 + 2γk;q

3

)2

(Gk;q)
3 Ṙk;q

'3

∫
dq

2π
(γk;0)2 (Gk;q)

3 Ṙk;q

=
3k2 (λk + νk)

2

4π

(
8k

(k2 +mk) 3

+
3kαkβ

2
k

(
4
(
k2 +mk

)
+ 3βk

)
(k2 +mk) 3 (k2 + βk +mk) 2 (αk (k2 + βk +mk) + k2βk (k2 +mk))

−
3
√
αk
√
βk
(
12βk

(
k2 +mk

)
+ 8

(
k2 +mk

)
2 + 5β2

k

)
tan−1

(
k
√
βk
√
k2+mk

√
αk
√
k2+βk+mk

)
(k2 +mk) 7/2 (k2 + βk +mk) 5/2

−
2kα2

kβ
3
k

(k2 +mk) 3 (k2 + βk +mk) (αk (k2 + βk +mk) + k2βk (k2 +mk)) 2
(3.60)

In equation 3.60 we used a zero internal momenta approximation for the term γk;q, in

order to achieve a reasonable analytical expression to write in the text. However, it is

possible to achieve an analytical expression also evaluating the exact integral without

any approximation, and the numerical results achieved solving the system with the

exact equation are very similar to the ones achieved using it’s approximated version.
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Figure 3.6: RG Flow of the dimensionless couplings ǧi,k = gi,kk
−di from t=1 to t=-1 achieved

using the truncation 3.51, 3.53 for the initial conditions ε1 = α1 = β1 = µ1 = ν1 = 0, m1 =

0.1, λ1 = 0.2 in d=1.

In order to check the accuracy of our truncation, we can make some comparison with

some known exact numerical results. Let us consider the vacuum energy solution for

the bare potential m2 φ
2+ λ

4!φ
4+ ω

6!φ
6, which give the ground state of the QM system, and

compare it with the known result εpo achieved with other asserted techniques [11],[12].

We can also introduce a truncation of the form 3.51 with higher order potential terms

and proceed as before in order to get a more accurate differential system.

Vk[φ] =
m∑
n=0

g2nφ
2n with m = 2, 3, 4, 5, 6 (3.61)

If we compare the LPA results εLPAo given in 2.55 with the results achieved using

the truncation containing the non-local ansatz for the 2-point and 4-point vertices

εANSATZo , we find that the non-local truncation provides more accurate outcomes than

the LPA for many initial conditions and seems to converge to a better result when

we increase the maximum polynomial order m of the potential in our truncation. In

particular, we find that considering the bare action S[φ] =
∫
dx 1

2(∂φ)2 + φ4, in the
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high m limit the non-local truncation seems to converge to a value with a relative error

of about 3 10−4, one order of magnitude more accurate than the one achieved with

the LPA. Moreover, we find that both the truncations provides a very accurate result

for a particular value of m, that is m = 3 for the LPA and m = 4 for the non-local

truncation, and we find that the most accurate non-local truncation result is again

one order of magnitude more accurate than the LPA one. Otherwise, if we consider

the bare action S[φ] =
∫
dx 1

2(∂φ)2 + φ6, we find that both the truncations are less

accurate. Despite this, in the high m limit the non-local truncation seems to converge

with a relative error of about 2 10−2, more than a 20 percent more accurate than the

LPA result. We could try to improve our results by introducing in our truncation a

non-local ansatz also of the 6-point vertex together with the 2-point and 4-point ones.

m=2 m=3 m=4 m=5 m=6

εLPAo 0,662917 0,667812 0,666432 0,666207 0,666225

εANSATZo 0,664441 0,669317 0,667964 0,667741 0,667755

εLPAo −εo
εo

-7,59 10−3 -2,61 10−4 -2,33 10−3 -2,66 10−3 -2,64 10−3

εANSATZo −εo
εo

-5,31 10−3 1,99 10−3 -3,33 10−5 -3,67 10−4 -3,46 10−4

Table 3.1: Vacuum energy for S[φ] =
∫
dx 1

2 (∂φ)2 + φ4 calculated using the LPA truncation

2.4, 3.61 (LPA) and the non-local truncation 3.51, 3.61 (ANSATZ) for different maximum

potential orders 2m. The results are compared with the exact value εo = 0, 66798625916.
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m=2 m=3 m=4 m=5 m=6

εLPAo ————— 0,682646 0,666403 0,665941 0,665345

εANSATZo ————— 0,685881 0,669653 0,669331 0,668714

εLPAo −εo
εo

————— 2,85 10−3 -2,10 10−2 -2,17 10−2 -2,26 10−2

εANSATZo −εo
εo

————— 7,61 10−3 -1,62 10−2 -1,67 10−2 -1,76 10−2

Table 3.2: Vacuum energy for S[φ] =
∫
dx 1

2 (∂φ)2 + φ6 calculated using the LPA truncation

2.4, 3.61 (LPA) and the non-local truncation 3.51, 3.61 (ANSATZ) for different maximum

potential orders 2m. The results are compared with the exact value εo = 0.6807036117.

3.6 Discussion

We developed two non-local truncations describing the EAA of a real scalar field theory

in d=1 both in the symmetric and in the non-symmetric phase. We compared the

vacuum energy results achieved using the Z-2 invariant truncation with the asserted

ones achieved with the perturbative expansion approach and we found that the non-

local truncation was one order of magnitude more accurate than the LPA truncation.

This is quite a good result, if we remember the strong approximations we introduced in

order to achieve a consistent Z-2 invariant non-local truncation containing a non-local

ansatz both for the 2 and 4 point vertices. Moreover, we only used the zero momentum

value and the lowest order high momentum behavior of the vertices flow in order to

calibrate the flow for the parameters in the ansatz. This approach strongly simplified

our calculations, as we achieved the small momentum behavior of the vertices without

introducing an high order derivative expansion for both the 2 and 4 point vertices,

which would be quite an hard task, but it could also lead to misleading results.

We investigated the d=1 model, i.e. the QM case, but the generalization to arbitrary

d dimensions is straightforward and with some work it is possible to achieve exact

analytical results for arbitrary d dimensions. For the sake of brevity we will not write
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the d > 1 dimensional results in the following, since the β functions are much more

complicated expressions, but we will use the 4-dimensional model in chapter 4 in order

to check the validity of our truncation also for higher dimensional theories.



Chapter 4

BMW Equation

We will now introduce an alternative method, recently developed, to solve the ERGE

and obtain the full momentum dependence of any n-point vertex, in order to check the

reliability of the results achieved using the non-local ansatz. This method was firstly

developed by J.-P. Blaizot, R. Mendez-Galain and N. Wschebor [6],[2],[4],[7] and exploit

some approximations in order to develop a close integro-differential flow equation for

the n-point function able to investigate the complete momentum-dependence of any

vertex. These integro-differential equations are a priori difficult to solve, but making

some more approximations one can reduce them to a more simple differential system

that can be finally solved with a reasonable numerical effort.

4.1 The Method

The derivation of the BMW approach to the ERGE proceeds as follow: recalling equa-

tion 2.28 and pointing out the field dependence of the n-point vertices, it is possible to

write

Γ̇
(2)
k;p;φ =

∫
ddq

(2π)d
Gk;q;φΓ

(3)
k;p,−p,q−q;φGk;q+p;φΓ

(3)
k;p+q,−p,−q;φGk;q;φṘk;q

−1

2

∫
ddq

(2π)d
Gk;q;φΓ

(4)
k;p,−p,q,−q;φGk;q;φṘk;q

77
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where

Gk;q;φ =
(

Γ
(2)
k;q;φ + Rk;q

)−1
(4.1)

In general, it is possible to find an analogue flow equation for every n-point vertex in-

volving all the m-point functions with m ≤ n+2. Therefore, it is not possible to achieve

a closed system describing the flow of an n-point vertex and we deal with infinite-many

integro-differential coupled equations. This problem has been solved by BMW by mak-

ing some considerations about the integration over the momentum fluctuations. In fact,

when working with the optimized cutoff scheme, the Ṙk;q term restrict the integration

dominion to all q ≤ k. Therefore, by assuming the n-point vertices to be smooth for

small momenta and the external momenta p to be greater than the scale k, it is possible

to approximate q = 0 in the n-point vertices in the rhs of the flow equation.

Γ̇
(2)
k;p;φ =

∫
ddq

(2π)d
Gk;q;φΓ

(3)
k;p,−p,0;φGk;q+p;φΓ

(3)
k;p,−p,0;φGk;q;φṘk;q

−1

2

∫
ddq

(2π)d
Gk;q;φΓ

(4)
k;p,−p,0,0;φGk;q;φṘk;q

Moreover, recalling that the partial derivative in φ corresponds to the functional deriva-

tive in a constant field, it is possible to identify

Γ
(3)
k;p,−p,0;φ =

∂Γ
(2)
k;p;φ

∂φ
and Γ

(4)
k;p,−p,0,0;φ =

∂2Γ
(2)
k;p;φ

∂φ2
(4.2)

and, substituting, it is possible to write

Γ̇
(2)
k;p;φ = J 3

k;p;φ

∂Γ
(2)
k;p;φ

∂φ

2

− 1

2
I2
k;φ

∂2Γ
(2)
k;p;φ

∂φ2
(4.3)

with, again,

J nk;a;φ =

∫
ddq

(2π)d
Gn−1
k;q;φGk;q+a;φṘk;q (4.4)

Ink;φ =

∫
ddq

(2π)d
Gnk;q;φṘk;q = J nk;a=0;φ (4.5)

as we already defined in section 3.4. Equation 4.3 present the structure of a close

integro-differential equation. Therefore, it is theoretically possible to numerically solve
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this equation for given boundary conditions, but it is quite an hard task as we are

forced to evaluate it for every p in order to be able to perform the integrations 4.4

and 4.5. BMW have reduced this problem to a much simpler differential equation by

separately evaluating the terms J 3
k;a;φ and I2

k;φ after employing another approximation.

For example, it is possible to achieve this result by calculating the analytical form

of these terms using the LPA next to leading order and then substituting in these

expressions the value of the couplings achieved solving the ERGE using a truncation

satisfying the LPA, as showed in appendix B. The accuracy of such an approximation

has been investigated by Blaizot, Mendez-Galain and Wschebor with good results.

The zero internal momenta approximation is evidently inaccurate when we study

the zero external momenta regime and, therefore, it is possible to improve the method

by separately evaluating Γ
(2)
k;0 = ∂2Vk

∂φ2 . In order to do this, it is useful to introduce the

self-energy

Σk;p;φ = Γ
(2)
k;p;φ − Γ

(2)
k;0;φ − p

2 (4.6)

satisfying

Σ̇k;p;φ = J 3
k;p;φ

∂Γ
(2)
k;p;φ

∂φ

2

− 1

2
I2
k;φ

∂2Γ
(2)
k;p;φ

∂φ2
− [p→ 0] (4.7)

to be solved together with the flow equation for the potential

V̇k;φ =
1

2

∫
ddq

(2π)d
Gk;q;φṘk;q (4.8)

with

Γ
(2)
k;p;φ = p2 +

∂2Vk
∂φ2

+ Σk;p;φ = G−1
k;p;φ − Rk;p (4.9)

It is possible to use the same approach in order to achieve a close integro-differential

equation for every n-point vertex with arbitrary n ≥ 2 [5].
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4.2 BMW and non-local 2-point vertex truncation

We will now use the BMW technique results as a test for the results achieved with the

non-local truncations we developed in chapter 3. We considered a d-dimensional scalar

field theory characterized by the bare action

S[φ] = Γk=ks [φ] =

∫
dx

(
1

2
∂µφ(x)∂µφ(x) +

mo

2
φ(x)2 +

ρo
3!
φ(x)3 +

λo
4!
φ(x)4

)
(4.10)

and we investigated the RG Flow of the EAA starting from ks to ke, focusing on the

d=1 and d=4 models.

As a first step, we numerically solved the system of coupled differential equations 3.20-

3.26 for the couplings associated to the truncation 3.13, 3.16, generalized to the d-

dimensional case. In such a way, we achieved a numerical expression for the effective

average 2-point function for k = ke, evaluated in φ = 0

Γ
(2)
ke,p

= σαke ,βke ;p +mke − ρkeΦ̂ke +
λke
2

Φ̂2
ke (4.11)

We compared the achieved results with the ones achieved numerically solving the

integro-differential BMW equation for the 2-point vertex. We separately evaluated the

terms J 3
k;a;φ and I2

k;φ numerically solving the flow equation for the couplings under the

LPA and substituting the results in the correspondent analytical expressions, as shown

in appendix B. In such a way, we reduced to a standard differential equation, that we

autonomously solved for every p implementing the Finite Difference Method on grid.

4.2.1 1-dimensional results

We numerically solved the 1-dimensional differential system 3.20-3.26 considering a

scale parameter flow from ks = 10 to ke = 0.1. Such a flow interval is able to guarantee,

in d=1, more than the 85 percent of the total flow of the Effective Average Action under

the LPA and more than the 99 percent of the flow of the non-local 2-point vertex term

in the non-local truncation model we developed.
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d=1 Γ
(2)
ke;p=0 lim

p→∞

(
Γ

(2)
ke;p
− p2

)
BMW 0.9987497 1.0000000

N-L Truncation 0.9987499 1.0000023

% err 1 10−7 2 10−6

Table 4.1: Numerical results of the low and high momentum 2-point vertex behavior achieved

with different techniques in a 1-dimensional scalar field theory with initial conditions as 4.10,

where mo = 1, ρo = 0.1 and λo = 0, and for the scale parameter k flowing from ks = 10

to ke = 0.1. BMW: BMW technique; N-L Truncation: Non-local truncation 3.13, 3.16. The

numerical accuracy of the BMW result is 10−7.

Than, we solved the BMW equation in d=1 using the Explicit Euler Finite Differ-

ence Method. We considered a domain in the field φ from φs = −5 to φe = 5, that is

adequate to provide a final result comfortably independent from the boundary lateral

conditions, and we set up the grid partitioning the domain in the scale parameter k

in nk = 500 intervals and the field domain in nφ = 51 intervals. In such a way, we

achieved a numerical precision in the final result of about 10−7.

Comparing the outcomes of the two techniques, we find a good agreement of the

results and, in particular, we find that the difference between the low momentum 2-

point vertex values seems to be compatible with the numerical accuracy of the finite

difference method used to solve the BMW equation. The high momentum behavior

shows a bigger difference, of the order of 10−6, that is an order of magnitude higher than

the numerical accuracy of the results. We can interpret this result as the consequence of

the approximate nature of our truncation, and in particular of the local approximation

of the 4-point vertex. In fact, the non-local truncation solution introduces a flow for

the high momentum 2-point vertex value while, from different considerations, it is

possible to show that no flow for this term is present if we solve the ERGE without any

truncation. It is nevertheless possible to solve this problem by introducing a non-local

4-point vertex term in our truncation. Finally, we find that the p-dependent shape
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of the various 2-point functions achieved with the different techniques shows a good

agreement. This is a really comforting result, as the simple analytical function σµ,ν,p

that we introduced in our ansatz seems to be able to fit with a good accuracy the

non-local structure of Γ
(2)
k;p in such a theory. Finally, we also tried to increase the RG

interval for the scale parameter, considering an RG flow from ks = 50 to ke = 0.05. In

a 1-dimensional scalar theory, such a flow interval guarantees more than the 95 percent

of the total flow of the Effective Average Action under the LPA and more than the

99.9 percent of the flow of the non-local 2-point vertex term in the non-local truncation

model we developed. We setted nk = 2500 and nφ = 51 in the Finite Difference Method

grid with, again, φs = −5 and φe = 5 as field dominion. In such a way, we found that

the non-local truncation outcomes for a wider RG flow seem to fit the BMW results

more accurately than in the case of the previous k-interval.
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Figure 4.1: Graphical representation of Γ
(2)
k=ke;p

achieved using different techniques in a 1-

dimensional scalar field theory with initial conditions as 4.10 with ms = 1, ρs = 0.1 and λs = 0

and for the scale parameter k flowing from ks = 10 to ke = 0.1 (a) and from ks = 50 to ke = 0.05

(b). Red-dotted line: Finite Difference numerical results of the BMW equation for different p;

blue-solid line: Numerical solution of the differential system concerning the non-local truncation

3.13, 3.16.
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d=4 Γ
(2)
ke;p=0 lim

p→∞

(
Γ

(2)
ke;p
− p2

)
BMW 0.99990073617 1.00000000

N-L Truncation 0.99990073671 1.00000004

% err 5 10−10 4 10−8

Table 4.2: Numerical results of the low and high momentum 2-point vertex behavior achieved

with different techniques in a 4-dimensional scalar field theory with initial conditions as 4.10,

where mo = 1, ρo = 0.1 and λo = 0, and for the scale parameter k flowing from ks = 10

to ke = 0.1. BMW: BMW technique; N-L Truncation: Non-local truncation 3.13, 3.16. The

numerical accuracy of the BMW result is 10−9.

4.2.2 4-dimensional results

We investigated the 4-dimensional case proceeding as we did in the 1-dimensional one,

with the only difference of a higher grid resolution, that is nk = 1000 and nφ = 101,

providing a numerical accuracy of about 10−9. The dependence of the result from the

lateral boundary condition is negligible. As it happened in the d=1 case, we found a

good numerical agreement between the results achieved using different techniques. In

particular we found that the difference between the low momentum behavior results

is compatible with the numerical accuracy of the Finite Difference Method, while the

high momentum behavior seems to differ more, as it is the case for the 1-dimensional

case. Again, the reason for this is to the local approximation of the 4-point vertex

in the non-local truncation we developed, which introduce an improper flow of the

high-momentum 2-point vertex value. We will address this problem also in the next

subsection. Finally, we find that the Γ
(2)
ke;p

p-dependent shape achieved using the non-

local truncation differs from the one achieved using the BMW equation more than in

the case of d=1. In particular, it result to be lower than the BMW one for p . 5 and

higher for p & 5.
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Figure 4.2: Graphical representation of Γ
(2)
k=ke;p

achieved using different techniques in a 4-

dimensional scalar field theory with initial conditions as 4.10 with mo = 1, ρo = 0.1 and λo = 0

and for the scale parameter k flowing from ks = 10 to ke = 0.1. Red-dotted line: Finite

Difference results of the BMW equation for different p; blue-continuous line: solution of the

differential system concerning the non-local truncation 3.13, 3.16 for d=4.

4.3 BMW and non-local Z-2 invariant truncation

We will now compare the BMW results with the ones achieved using the truncation

with non-local 2-point and 4-point vertices in a Z-2 invariant d-dimensional scalar QFT.

We considered the bare action

S[φ] = Γk=ks [φ] =

∫
dx

(
1

2
∂µφ(x)∂µφ(x) +

mo

2
φ(x)2 +

λo
4!
φ(x)4

)
(4.12)

and, again, we proceeded as in section 4.2 focusing on the d=1 and d=4 cases.

4.3.1 1-dimensional results

We numerically solved the 1-dimensional differential system associated to the Z-2 in-

variant non-local truncation 3.51, 3.61 both for the maximum potential order 2m = 4

and 2m = 12, in order to compare the different outcomes. We considered a flow of the

scale parameter from ks = 10 to ke = 0.1, providing more than the 86 percent of the

total flow of the EAA under the LPA and more than the 97 percent of the total flow
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d=1 Γ
(2)
ke;p=0 lim

p→∞

(
Γ

(2)
ke;p
− p2

)
Γ

(4)
ke;0,0,0,0

lim
p→∞

Γ
(4)
ke;p,−p,0,0

BMW 1.18938 1.19759 0.7961 0.9228

NLT m=2 1.18876 1.19755 0.7701 0.9234

% err 5 10−4 3 10−5 3 10−2 6 10−4

NLT m=6 1.18970 1.19857 0.7930 0.9496

% err 3 10−4 8 10−4 4 10−3 3 10−2

Table 4.3: Numerical results of the low and high momentum 2-point vertex behavior achieved

with different techniques in a 1-dimensional Z-2 invariant scalar field theory with initial condi-

tions as 4.12, where mo = 1 and λo = 1, and for the scale parameter k flowing from ks = 10

to ke = 0.1. The numerical accuracy of the BMW 2-point vertex results is 5 10−5 and the

one of the 4-point vertex outcomes is 5 10−4. BMW: BMW technique; NLT m=2: Non-local

truncation 3.51, 3.53; NLT m=6: Non-local truncation 3.51, 3.61

of the non-local 2-point vertex term in the non-local truncation. Then, we solved the

BMW equation considering a domain in the field φ from φs = −5 to φe = 5, sufficient to

guarantee a final result independent from the lateral boundary conditions with a good

accuracy, and we set up a grid composed by nk × nφ = 2000× 101 nodes, providing a

numerical accuracy of 5 10−5 for the 2-point vertex results and 5 10−4 for the 4-point

vertex ones.

We found that the non-local truncation results for m=2 fit the high momentum be-

havior of the 2 and 4 point vertices better than the m=6 outcomes and are compatible

with the numerical precision of the Finite Difference Method, while the m=6 results

are more apt to describe the small momentum behavior of the vertices, although they

differ from the BMW result for more than the numerical precision of the latter.This can

be interpreted, again, as the consequence of the local approximation we made about

the n-point vertices with n > 4. In fact, the n-point vertices for large n gives an im-

portant contribution to the flow of the low-momentum 2 and 4 point vertices, but, as a
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Figure 4.3: Graphical representation of Γ
(2)
k=ke;p

(a) and Γ
(4)
k=ke;p,−p,0,0 (b) achieved using

different techniques in a 1-dimensional Z-2 invariant scalar field theory with initial conditions

as 4.12 with mo = 1 and λo = 0 and for the scale parameter k flowing from ks = 10 to ke = 0.1.

Red-dotted line: Finite Difference results of the BMW equation for different values of p; black-

dashed line: Solution of the differential system concerning the non-local truncation with a

maximum polynomial order 2m = 4 in the potential 3.51, 3.53 ; blue-continuous line: Solution

of the differential system concerning the non-local truncation with a maximum polynomial order

2m = 12 in the potential 3.51, 3.61.

consequence of the local approximation we made, they also introduce an improper flow

term for the high momentum limit of the vertices. Therefore, it could be reasonable

to use the results achieved with m=2 to fix the high momentum 2 and 4 point vertex

behavior and the outcomes for m=6 to set the small momentum one. Moreover, it is

possible to get a more accurate fit of the outcomes recalling the approximation scheme

we used in both the BMW and non-local truncation techniques. In fact, developing the

BMW equation, we used the 0 order approximation for high external momenta and in

our calculations we did not improve this approximation neither for zero external mo-

menta. Contrarily, in the approximation scheme we introduced when dealing with the

non-local 4-point vertex ansatz 3.4, we improved such an approximation by adequately

evaluating the zero external momenta 2-point vertex flow. Thus, we can try to remove
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such an improvement in the non-local truncation differential system in order to use

an approximation scheme more similar to the one we used for the BMW equation. In

such a way, we achieve a quite good improvement of the agreement between the results

and, specifically, we reduce the difference between the BMW and non-local truncation

results of about a factor 3 for both the low and high momentum 2-point vertex limits.

In addition, other sources of approximations and errors are present in the non-local

truncation approach we used, providing differences from the BMW results. Together

with the local approximation of the n-point vertices for high n, also the collinear ap-

proximation for the 4-point vertex is a potential source of errors, and for example could

lead to an improper flow for the high momentum 2-point vertex limit. Also the high

external momenta approximation could lead to discordant results; in fact, despite the

same approximation has been used in both the techniques, different approaches could

bring to different approximation consequences in different frameworks. Finally, the

ansatz we made about the 2 and 4 point vertices could reveal to be inadequate to prop-

erly describe the non-local structure of the vertices, but this doesn’t seem to be the

case, as from 4.3 we can find a quite good agreement between the vertices p-dependent

shape we achieved using different techniques.

The d=4 the situation is quite similar to the 1-dimensional case. In particular, we

found that the final results are a little less dependent on the maximum potential order

we introduced in our non-local truncation but, despite that, the 4-dimensional results

seems to reproduce all the features we described about the 1-dimensional ones, and

therefore we will not write them in the follow.

4.4 Discussion

We found that the non-local truncation seems to produce predictions quite compatible

with the results achieved numerically solving the BMW equation for both a Z-2 in-

variant and Z-2 non-invariant theory both in d=1 and d=4 and, as a very good result,
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it requires a much more little numerical effort. Despite many differences between the

results arise in some regimes, they could be interpreted as the consequence of some

approximations we introduced in our truncations, and there are many improvements

we can bring in the future in order to try to improve our results. Obviously, this can

not be considered as a definitive test for the validity of our ansatz. In fact, the BMW

equation was developed through many approximations, some coincident with the ap-

proximations we used in the non-local truncation approach, and therefore we can not

be sure of the validity of the BMW results as a test for our truncations. Moreover, we

only tested the RG theory flow for a small interval in the scale parameter dominion,

as a consequence of the Finite Difference Method we used to solve the BMW equation.

Therefore, we have no information about the full RG flow results, and the only thing we

can do in order to check their validity is try to modify such an interval and investigate

the consequences on the outcomes.



Chapter 5

Conclusions

In the first part of this work, we tried to give a brief introduction to one of the most

useful non-perturbative approach to the Renormalization Group. We compared the re-

sults we may achieve in this approach with the perturbative ones, trying to investigate

the physical meaning of our equations, and we inserted some simple examples, in order

to clarify the introduced concepts. We lingered on some conceptual consequences of

this different approach to the renormalization theory, such as the AS scenario and the

meaning of fundamental and effective theory, and we tried to understand the deeper

meaning of the insertion of a regularization term in the functional integration, exploring

the balanced approach to the coarse-graining. Finally, we described the most used trun-

cations, trying to discuss good and bad aspects of them in order to better understand

what are the most relevant interacting terms of the EAA to be considered.

In the second part of this thesis, where all our original work is collected, we firstly

investigated the 1-loop 2-point vertex structure for a real scalar field theory in order

to find a reasonable ansatz describing its momentum-dependence. First, we found that

a very simple monotonous function dependent from only two parameters was able to

properly fit the 1-loop results at every energy scale k, provided a good choice of the

parameters, and we adopted such a function as fundamental ansatz for our truncation.

We also investigated the Z-2 invariant real scalar field theory, where it is necessary

89
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to consider the p-dependent structure of the 4-point vertex in order to achieve a non-

trivial 2-point vertex, and we developed an approximation scheme that allows us to

introduce consistently a non-local ansatz for both the 2 and 4 point vertices. We found

that the same function we already used for the non Z-2 invariant model was able to

properly describe the momentum dependence of the 2 and 4 point vertices also in a Z-2

invariant theory, and we used it for the construction of a Z-2 invariant truncation.

Using the zero momentum value and the high momentum behavior of the 2 and

4 point vertices in order to calibrate the parameters in our ansatz, we derived the

differential system of coupled equations describing the RG flow of the couplings for

both the truncations.

We numerically solved them and we compared the vacuum energy outcome for the

anharmonic oscillator in QM with the LPA results and with the asserted values achieved

using high order perturbative expansion and other techniques. We found that the non-

local truncation was able to produce predictions one order of magnitude more accurate

than the LPA, that is quite a comforting result. Moreover, we achieved this result using

the Z-2 invariant truncation, that was developed introducing many approximations, and

try to achieve an improvement to the LPA with a derivative expansion for the 2 and 4

point vertices would be quite an hard task.

Then, we used the BMW technique in order to partially test against this approxi-

mate non-perturbative scheme the non-local truncation results in 1 and 4 dimensions

for both the Z-2 invariant and Z-2 non-Invariant models. We found that in the Z-2

non-invariant theory, the non-local truncation fits the BMW results with good preci-

sion. In particular, the agreement between the two techniques for small momenta is

compatible with the numerical precision of the results, while for high momenta they

differ of about 10−6-10−8, difference that can be interpreted as the consequence of the

local approximation we made about the 4-point vertex. Also the agreement between

the BMW and the non-local truncation results in the symmetric phase is quite good,

despite not as good as in the previous case.
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But this is not a satisfying test for the validity of our truncation: firstly, we com-

pared all the non-local truncation results with the outcomes of the BMW equation,

that is not an exact equation. Therefore we are comparing two approximate results.

Moreover, with the BMW technique we have not been able to evaluate the complete

RG flow but only a small interval of three orders of magnitude, and therefore we don’t

know if our results keep valid also in the case of a complete flow for the energy scale.

There are many interesting directions we can work in order to improve these trunca-

tions and better test their accuracy. As a first step, we could insert a non-local 4-point

vertex ansatz also in the non-symmetric phase truncation, in order to improve the re-

sults, and we could develop non-local ansatz for the n-point vertices also for n > 4 to be

inserted in the Z-2 invariant truncation. We could also try to calibrate the flow of the

parameters in the ansatz using the low-momentum behavior of the vertices, instead of

the high-momentum one. This would lead to more accurate results, as most of the RG

flow of the EAA depends on the low-momentum behavior of the vertices. Moreover,

we could try to export these results to more complex theories. In particular, there

are many theories in which the non-local structure of the EAA plays a very important

role. It is the case of massless theories, in which the mass term of the EAA is forced

to be null, for example because of Gauge invariance or chirality reasons, and in which

the non-local behavior of the 2-point vertex would be fundamental in order to achieve

the correct evaluation of the vacuum energy flow. Finally, it could be interesting to

investigate the consequences of a non-local truncation on the AS behavior of a theory.

For example, it could be possible to evaluation the effect of a local truncation on the

Wilson Fisher 3-dimensional IR Fixed Point. The truncation we developed seems to

be able to achieve accurate results with a little work, and to predict the p-dependent

structure of the vertices with good accuracy, but much remains to be done in order to

completely test their validity and to export these results to many other situations.



92 CHAPTER 5. CONCLUSIONS



Appendix A

Loop expansion

As we saw in section 3.1, it is possible to derive a loop expansion for the average

effective action starting from the ERGE. If we deal with an optimized regulator term,

we are also able to achieve an analytical expression for the first expansion terms. In

the following, we are going to evaluate the 1-loop 2-point vertex and the 2-loop vacuum

energy term in 1 and d dimensions. The 1-dimensional case is investigated separately

from the more general d-dimensional one, as a different approach is used about the

integration over the angular variables. We consider a local bare action

S[φ] =

∫
ddx

1

2
(∂µφ(x))2 + V [φ(x)] (A.1)

A.1 Loop expansion in 1 dimension

As we understand from 3.3, the 1-loop flux of the 2-point vertex can be seen as the sum

of a derivative contribution proportional to the 3-point vertex and a non-derivative one

proportional to the 4-point vertex.

∂tΓ
(2)1−loop
k = ∂tΓ

(2)p−ind
k + ∂tΓ

(2)p−dep
k (A.2)
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A.1.1 1-loop momentum independent 2-point vertex

We will firstly calculate the simpler momentum independent contribution

∂tΓ
(2)p−ind
k = −V

(4)

2

∫
dq

2π
Gk;qGk;qṘk;q (A.3)

We can write the optimized cutoff term for a constant field strength zφ = 1

Rk;q = (k2 − q2)θ(k2 − q2) (A.4)

Ṙk;q = 2k2θ(k2 − q2)

= Ṙ0
k;qθ(k

2 − q2) (A.5)

and the propagator

Gk;q =
1

(q2 + V ′′) +Rk;q

=
1

(k2 + V ′′)
θ(k2 − q2) +

1

(q2 + V ′′)
θ(q2 − k2)

= Gmk;qθ(k
2 − q2) +GMk;qθ(q

2 − k2) (A.6)

Substituting, we find

∂tΓ
(2)p−ind
k = − k3V (4)

π (k2 + V ′′)2 (A.7)

and finally, integrating out the flux, we find

Γ
(2)p−ind
k = −

∫ ∞
k

∂tΓ
(2)p−ind
s

s
ds

=
V (4)

4π

 2k

k2 + V ′′
−

2 tan−1
(

k√
V ′′

)
√
V ′′

+ π

√
1

V ′′

 (A.8)

A.1.2 1-loop momentum dependent 2-point vertex

In this section we are going to calculate the ∂tΓ
(2)
k one loop momentum dependent

contribution

∂tΓ
(2)p−dep
k;p = (V (3)[φ])2

∫
dq

2π
Gk;p+qGk;qGk;qṘk;q (A.9)
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Firstly, substituting A.6 and A.5 in A.9 we get

∂tΓ
(2)p−dep
k;p =(V (3)[φ])2

∫
dq

2π
Gmk;p+qG

m
k;qG

m
k;qṘ

0
k;qθ(k

2 − q2)θ(k2 − (q + p)2)

+ (V (3)[φ])2

∫
dq

2π
GMk;p+qG

m
k;qG

m
k;qṘ

0
k;qθ(k

2 − q2)θ((q + p)2 − k2) (A.10)

where we can define

Hq,p = Gmk;p+qG
m
k;qG

m
k;qṘ

0
k;q

Fq,p = GMk;p+qG
m
k;qG

m
k;qṘ

0
k;q (A.11)

Since (q + p)2 > k2 if q > −p+ k or q < −p− k, we can write

∂tΓ
(2)p−dep
k;p = (V (3)[φ])2

∫ k

−k

dq

2π
Fq,p if |p| > 2k

∂tΓ
(2)p−dep
k;p = (V (3)[φ])2

∫ k−|p|

−k

dq

2π
Hq,|p|

+(V (3)[φ])2

∫ k

k−|p|

dq

2π
Fq,|p| if |p| < 2k (A.12)

We can now calculate the indefinite integrals

∫
dq

2π
Hq,p =

qk2

π(V ′′ + k2)3∫
dq

2π
Fq,p =

k2 ArcTan
[

(p+q)√
V ′′

]
πk4
√
V ′′(V ′′ + k2)2

(A.13)

and, finally, we get

∂tΓ
(2)p−dep
k;p =− θ

[
4k2 − p2] k2(V (3)[φ])2

((
k2 + V ′′

) (
tan−1

(
k√
V ′′

)
− tan−1

(
k+p√
V ′′

))
+
√
V ′′(p− 2k)

)
π
√
V ′′ (k2 + V ′′)3

− θ
[
p2 − 4k2] k2(V (3)[φ])2

(
tan−1

(
p−k√
V ′′

)
− tan−1

(
k+p√
V ′′

))
π
√
V ′′ (k + V ′′)2

(A.14)
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We can expand in series for small momenta the p-dependence of A.14, finding the

known results for the flow of the field strength and of the contribution to the flow of

the mass term proportional to the 3-point vertex:

∂tΓ
(2)p−dep
k;p =

2k3(V (3)[φ])2

π(V ′′ + k2)3
− k3(V (3)[φ])2

π(V ′′ + k2)4
p2 +O

(
p3
)

(A.15)

We can now integrate the flux of the 2-point vertex in the 1-loop approximation. Firstly

we define the functions tk,p and uk,p as follow

∂tΓ
(2)p−dep
k;p

k
= θ

[
4k2 − p2

]
tk,p + θ

[
p2 − 4k2

]
uk,p (A.16)

we can write

Γ
(2)p−dep
k;p = −

∫ ∞
t(k)

∂tΓ
(2)p−dep
k(t);p

dt

= −
∫ ∞
k

∂tΓ
(2)p−dep
s;p

s
ds

= θ(2k − p)T [k] + θ(p− 2k)(T [p/2] + U [k, p/2]) (A.17)

where we have defined

T [k] =

∫ ∞
k

ts,pds ; U [ka, kb] =

∫ kb

ka
us,pds (A.18)
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and finally we get

Γ
(2)p−dep
k;p =

(V (3)[φ])2θ
(
4k2 − p2

)
4π
√
V ′′ (k2 + V ′′)

2
(4V ′′ + p2)

×(
√
V ′′ (p− 2k)

(
4V ′′ + p2

)
− 2π

(
k2 + V ′′

)2
−2
(
k2 + V ′′

)( (
−k2 + 3V ′′ + p2

)
tan−1

(
k + p√
V ′′

)
−
(
k2 + 5V ′′ + p2

)
tan−1

(
k√
V ′′

))
−2 p−1

√
V ′′
(
k2 + V ′′

)2 (
log
(
k2 + V ′′

)
− log

(
(k + p)2 + V ′′

)))

+
(V (3)[φ])2θ

[
−4k2 + p2

]
4π
√
V ′′ (k2 + V ′′)

2
(4V ′′ + p2)

×(
−2

(
k2 + V ′′

)2(
π − 2 tan−1

(
k√
V ′′

))
−2

(
k2 + V ′′

) (
−k2 + 3V ′′ + p2

)(
tan−1

(
k − p√
V ′′

)
+ tan−1

(
k + p√
V ′′

))
+4 p−1

√
V ′′
(
k2 + V ′′

)2
tanh−1

(
2kp

k2 + V ′′ + p2

))
(A.19)

A.1.3 2-loop Effective Average Action

We can now use the formula for the 2-Loop contribution to calculate the average effec-

tive action

∂tΓ
2−loop
k =

1

2

∫ ∞
0

dp

2π
(Gk;p)

2 (Γ
(2)p−ind
k;p + Γ

(2)p−dep
k;p )Ṙk;p (A.20)

We find that, because of the presence of a θ(k2 − p2) term in Ṙk;q, it is sufficient to

consider the part of ∆Γ
(2)p−dep
k;q belonging to the θ(4k2 − p2) term. It is possible to

achieve an analytical exact result for the flux of the 2-loop average effective action, but

it is much more involved than the flux of the 1-loop 2-point vertex and we will not write

the result in the following. By evaluating this result for a zero external field φ = 0, we

get to an analytical expression for the flux of the 2-loop vacuum energy. Finally, we

can now integrate out the flux ∂t∆Γ2−loop
k;p in k, but this is possible only numerically,

because of the complexity of the integrand.
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A.2 Loop expansion in d dimensions

A.2.1 1-loop momentum independent 2-point vertex

Proceeding as before and using the same definitions introduced in the previous sections

with the only exception of a d-dimensional integration with d > 1, we find

∂tΓ
(2)p−ind
k = − 1

2dπ
d
2 Γ[d2 + 1]

kd+2V (4)

(k2 + V ′′)2 (A.21)

and integrating out the flux

Γ
(2)p−ind
k = − V

(4)

2dπ
d
2

2kd+2
2F1

[
2, d2 + 1; d2 + 2;−k2

m

]
(2d+ 4)(V ′′)2Γ[d2 + 1]

− 1

2

(
1

V ′′

)1− d
2

Γ

[
1− d

2

]
(A.22)

where 2F1 represent the Hypergeometric Function.

A.2.2 1-loop momentum dependent 2-point vertex

Let us consider equation A.10 for d > 1. It reads

∂tΓ
(2)p−dep
k;p =

(V (3)[φ])2

(2π)d
Vol(Sd−1)

∫ ∞
0

dqqd−1

∫ 1

−1
dxGm

k;
√
p2+q2+2qpx

Gmk;qG
m
k;qṘ

0
k;qθ(k

2 − q2)θ(k2 − (q2 + p2 + 2qpx))

+
(V (3)[φ])2

(2π)d
Vol(Sd−1)

∫ ∞
0

dqqd−1

∫ 1

−1
dxGM

k;
√
p2+q2+2qpx

Gmk;qG
m
k;qṘ

0
k;qθ(k

2 − q2)θ((q2 + p2 + 2qpx)− k2)

where x = ~p · ~q
pq = cos θp,q. It is convenient to define

Hq,p,x = dD−1Gm
k;
√
p2+q2+2qpx

Gmk;qG
m
k;qṘ

0
k;q

Fq,p,x = dD−1GM
k;
√
p2+q2+2qpx

Gmk;qG
m
k;qṘ

0
k;q (A.23)

It is straightforward to show that

q2 + p2 + 2qpx− k2 > 0 ⇐⇒ x > lq,p =
k2 − q2 − p2

2qp
(A.24)
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and investigating the behavior of lq,p under the assumptions of q, p and k being positive

we find that

lq,p >


1 if q ∈ (0 , Max(k − p, 0])]

−1 if q ∈ [Max(p− k, 0) , k + p]

(A.25)

Finally, denoting for notational simplicity

K =
(V (3)[φ])2

(2π)D
Vol(SD−1) (A.26)

we can obtain

∂tΓ
(2)p−dep
k;p = if p < k K

∫ k

k−p
dq

∫ 1

lq,p

dxFq,p,x

+K

∫ k−p

0
dq

∫ 1

−1
dxHq,p,x +K

∫ k

k−p
dq

∫ lq,p

−1
dxHq,p,x

if k ≤ p < 2k K

∫ p−k

0
dq

∫ 1

−1
dxFq,p,x +K

∫ k

p−k
dq

∫ 1

lq,p

dxFq,p,x

+K

∫ k

p−k
dq

∫ lq,p

−1
dxHq,p,x

if 2k ≤ p K

∫ k

0
dq

∫ 1

−1
dxFq,p,x

(A.27)

We have obtained the corresponding analytical expression for 1-loop ∂tΓ
(2)p−dep
k;p in

arbitrary d-dimensions, but the result is much more complex than the 1-dimensional

one, and we will not report it in this work. Finally, it is possible to perform the

integration of the 2-point vertex flux in order to get Γ
(2)p−dep
k;p and, proceeding as we

did in the 1-dimensional case, it is possible to achieve a flow expression for the average

effective action.
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Appendix B

BMW Tools

As we see in section 4.1, the integro-differential equation 4.3 can be strongly simplified

by evaluating separately

J 3
k;a;φ =

∫
ddq

(2π)d
G2
k;q;φGk;q+a;φṘk;q (B.1)

I2
k;φ =

∫
ddq

(2π)d
G2
k;q;φṘk;q = J nk;a=0;φ (B.2)

This can be easily achieved under the LPA. As a first step, we can solve the ERGE

adopting the LPA truncation 2.4 - 2.5; for brevity purposes we will only consider all

potential terms up to the 4-order in φ.

V [φ] = εk +
mk

2
φ2 +

ρk
3!
φ3 +

λk
4!
φ4 (B.3)

101



102 APPENDIX B. BMW TOOLS

As we saw in chapter 2, the derivation of the d-dimensional RG flow equations for the

couplings is straightforward

∂tzk = −
21−dπ−d/2k3ρ2

kz
2
k

dΓ
(
d
2

)
(k2zk +mk) 4

(B.4)

∂tφ̂k =

2−2d−1π−dkd+2ρkzk

(
2d+1πd/2

(
k2zk +mk

)
4 − k3ρ2

kzk

Γ( d2 +2)

)
Γ
(
d
2 + 1

)
mk (k2zk +mk) 6

(B.5)

∂tεk =

2−2d−1π−dkdzk
(
k2 (zk − 1) +mk

)( k3ρ2
kzk

Γ( d2 +2)
− 2d+1πd/2

(
k2zk +mk

)
4

)
Γ
(
d
2 + 1

)
(k2zk +mk) 5

(B.6)

∂tmk = −
21−dπ−d/2kd+2zk

(
mk

(
k2λkzk − 3ρ2

k

)
− k2ρ2

kzk + λkm
2
k

)
d(d+ 2)Γ

(
d
2

)
mk (k2zk +mk) 3

×(
−

21−dπ−d/2k3ρ2
kzk

dΓ
(
d
2

)
(k2zk +mk) 4

+ d+ 2

)
(B.7)

∂tρk =
(4π)−dkd+2ρkzk

(
λk
(
k2zk +mk

) (
k2zk + 7mk

)
− 6mkρ

2
k

)
dΓ
(
d
2 + 2

)
Γ
(
d
2

)
mk (k2zk +mk) 8

×(
2d+1πd/2Γ

(
d

2
+ 2

)(
k2zk +mk

)
4 − k3ρ2

kzk

)
(B.8)

∂tλk =
3 21−2dπ−dkd+2zk

(
−6λkρ

2
k

(
k2zk +mk

)
+ λ2

k

(
k2zk +mk

)
2 + 4ρ4

k

)
(d+ 2)Γ

(
d
2 + 1

)2
(k2zk +mk) 9

×(
2d+1πd/2Γ

(
d

2
+ 2

)(
k2zk +mk

)
4 − k3ρ2

kzk

)
(B.9)

and, therefore, it is sufficient to numerically solve the system of coupled differential

equations in order to achieve the k-dependent value of the flowing couplings. It is now

possible to get an analytical expression for Ink;φ and J nk;a;φ proceeding as in A.1.2 and

A.2.2 for non-trivial anomalous dimensions ηk = −∂tzk
zk

I2
k;φ =

22−dπ−d/2z(d− η + 2)kd+2

d(d+ 2)Γ
(
d
2

)
(k2z + V”)2 (B.10)
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d=1

J 3
k;p;φ =

θ
[
p2 − 4k2

]
2π
√
z
√
V ′′ (k2z + V ′′)2

×((
η(z(k − p)(k + p) + V”)− 2k2z

)(
tan−1

(√
z(p− k)√

V”

)
− tan−1

(√
z(k + p)√

V”

))

+η
√
z
√
V ′′
(
p log

(
z(k − p)2 + V ′′

)
− p log

(
z(k + p)2 + V ′′

)
+ 2k

))

+
zθ
[
4k2 − p2

]
6π (k2z + V ′′)3 ×(
√

V”
√
z
(
z
(
−4(η − 3)k3 + 3(η − 2)k2p+ 3ηkp2 − ηp3)+ 3ηpV”

)
+3
(
k2z + V ′′

)((
η(z(k − p)(k + p) + V”)− 2k2z

)(
tan−1

(
k
√
z√

V”

)
− tan−1

(√
z(k + p)√

V”

))

+ηp
√

V”
√
z
(
log
(
k2z + V”

)
− log

(
z(k + p)2 + V”

))))
(B.11)

Proceeding as in subsection A.2.2 it is possible to achieve an analytical expression for

J 3
k;a;φ also in a general d-dimensional framework, but it is much more complex than in

the 1-dimensional case, and we will not write it in this work. We can finally substitute

the value obtained for the running couplings in the analytical expressions for Ink;φ and

J nk;a;φ in order to achieve the required terms to be inserted in equation 4.3.
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Appendix C

Sommario della Tesi

Nella prima parte della tesi vengono introdotti alcuni concetti fondamentali riguardo

uno dei piú utilizzati approcci non perturbativi al Gruppo di Rinormalizzazione.

Nel capitolo 1, dopo una breve escursione sull’interpretazione fisica dell’ azione effi-

cace, viene introdotto il concetto di azione efficace media e viene derivata un’ equazione

integro-differenziale che ne controlla il flusso, chiamata Equazione Esatta del Gruppo di

Rinormalizzazione (ERGE). Viene inoltre introdotto lo scenario di Salvezza Asintotica,

che si propone come una generalizzazione non-perturbativa del concetto di rinormal-

izzabilitá. Tutti i risultati ottenuti vengono confrontati con i loro corrispondenti in

teoria perturbativa, nel tentativo di comprendere meglio il significato fisico di questo

approccio. Infine, vengono dati alcuni semplici esempi.

Nel capitolo 2, viene introdotto un troncamento per l’azione efficace media utiliz-

zando l’approssimazione di potenziale locale. Il caso di un campo scalare reale inter-

agente in d-dimensioni viene approfondito e, attraverso la ERGE, vengono derivate le

equazioni di flusso per gli accoppiamenti. la ERGE viene inoltre utilizzata per investi-

gare le dimensioni anomale del campo e il flusso del valore di aspettazione del vuoto.

Infine, i risultati ottenuti per l’energia di vuoto nel caso di una teoria interagente in 1

dimensione, corrispondente all’oscillatore anarmonico quantistico, vengono confrontati

con i corrispondenti risultati in teoria perturbativa.
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Nel capitolo 3 é raccolta la maggior parte del nostro lavoro originale. Come prima

cosa, utilizzando i risultati perturbativi al primo ordine per il vertice efficace medio a 2

punti come riferimento (raccolti nell’appendice A), viene introdotto un ansatz non lo-

cale per quest’ultimo nel caso di un campo scalare reale in una dimensione. Tale ansatz

viene poi utilizzato per definire un troncamento non locale e, attraverso la ERGE, ven-

gono calcolate le equazioni di flusso per gli accoppiamenti. Viene poi proposto uno

schema di approssimazioni utile per introdurre un troncamento non locale consistente

anche nel caso di una teoria Z-2 invariante e, sotto tale troncamento, vengono nuova-

mente derivate le equazioni di flusso per gli accoppiamenti. Sempre nel caso di una

teoria Z-2 invariante, i risultati ottenuti attraverso il nostro troncamento non locale e

attraverso il troncamento definito nel capitolo 2 sono confrontati con i risultati esatti,

mostrando un miglioramento di un ordine di grandezza dei risultati ottenuti con l’ansatz

non locale rispetto a quelli ottenuti nell’approssimazione di potenziale locale.

Infine, nel capitolo 4 viene descritta una tecnica che permette di ottenere, attraverso

alcune approssimazioni, un’ equazione integro-differenziale chiusa per il vertice efficace

medio a 2 punti, chiamata BMW in onore dei primi ricercatori che la ottennero. Ab-

biamo risolto su griglia tale equazione utilizando un metodo alle differenze finite e

abbiamo utilizzato i valori ottenuti come test per i corrispondenti risultati ottenuti

attraverso il troncamento non locale da noi introdotto. Tale confronto ha evidenziato

un buon accordo tra risultati ottenuti nei due diversi approcci e, in particolare, sembra

mostrare come, in una teoria di questo tipo, il nostro ansatz sia in grado di descrivere

la struttura non locale delle funzioni a due e quattro punti con buona precisione.

Nelle conclusioni sono raccolti i piú significativi risultati ottenuti insieme ad alcune

proposte riguardo ulteriori test, possibili miglioramenti e interessanti applicazioni future

per i troncamenti non locali introdotti in questa tesi.
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